➖ نقشه راه یادگیری هوش مصنوعی | AI
🔘 هوش مصنوعی برای هوشمندسازی ماشینها استفاده میشه و مزایا و فایدهها زیادی برای جامعه و انسان داره.
👈 گام اول- ریاضیات
🔘 همونطور که اکثر دانشجویان رشته کامپیوتر میدانند ریاضیات و به خصوص مباحث جبرخطی، دیفرانسیل، حسابان، ساختمان گسسته و آمار و احتمال توی این رشته و گرایش نقش بزرگی رو ایفا میکنند؛ چرا که ماشینها و کامپیوترها تنها راهی که میفهمند اعمال منطقی و ریاضیات است و برای این که ما برنامهها و اهداف خودمون رو به اون منتقل کنیم باید بهشون فعالیت منطقی و ریاضیات بدیم.
🔘 در نتیجه شما برای شروع در گرایش هوش مصنوعی و زیرشاخه آن که بخواین فعالیت کنید، ناچارید این دروس رو یاد بگیرید.
👈 گام دوم - برنامه نویسی
🔘 برنامه نویسی رکن اصلی تو زمینه هوش مصنوعی داره و شما قبل از تسلط به زبان برنامه نویسی، باید به ساختمان داده و طراحی الگوریتم که از دروس تخصصی کامپیوتر هستند مسلط شوید چرا که شرط لازم برای نوشتن یک برنامه درست و بهینه و با خطا کم، باید الگوریتم رو به درستی دانست تا بتواند باعث صرفهجویی و کارآمد بودن بیشتر یک کد رو داشته باشد.
🔘 از بین زبانهای برنامه نویسی که با هوش مصنوعی تعامل خوبی دارند، میتونیم به پایتون اشاره کنیم:
پایتون: به دلیل سادگی و داشتن پکیجهایی مثه sci-kit learn کار با این کتابخونه به طور عمده در زمینههای data mining و data analys است که طیف وسیعی از الگوریتمها یادگیری ماشین در اون تعبیه شده، که از محبوبترین زبانها برنامه نویسی است.
🔘 بعد از یادگیری مقدماتی زبان برنامه نویسی، باید شیوه کار کردن با کتابخانهها مختلف و مرتبط با هوش مصنوعی مثه numpy (کتابخونهای که به کمکش میتونیم روی دادههای عددیایی که در حافظه موجوده، عملیات مختلفی رو انجام بدیم) رو یاد بگیرید و بارها و بارها تمرین کنید که در استفاده از اون متخصص شوید.
👈 گام سوم - مباحث و فیلدهای هوش مصنوعی
🔘 بعد از این که از مباحث اولیه عبور کردید، باید یه دانش عمومی از هوش مصنوعی رو آموزش ببینید.
🔘 بعد از پیشرفت هوش مصنوعی، این رشته به زیر رشتههای مختلفی تقسیم شد که در عین ارتباطی که بین این زیرشاخهها وجود داره، در موارد تخصصی و هدفهای هر کدوم، تفاوتهای چشمگیری رو شاهد هستیم.
🔘 بسته به علاقه و استعداد خودتون میتونید هر کدوم از این زیرشاخهها رو انتخاب کنید که نقشه راه هر زیرشاخه با زیرشاخه دیگری تفاوت داره.
🔘 البته لازم به ذکر است که یکی دیگر از مهارتهایی که به پیشرفت شما در زمینه هوش مصنوعی کمک میکنه آشنایی کامل و تخصصی با زبان انگلیسی است چرا که به روز بودن و مطالعهی مقالات روز دنیا در این رشته اهمیت بالایی داره اکثر این مقالات به زبان انگلیسی است و از آنجا که یه فیلد در رشته کامپیوتر است دانستن زبان انگلیسی لازم است.
📌 ریاضیات و برنامه نویسی برای همه زیرشاخهها هوش مصنوعی موردنیازه و در واقع جز قدمهای اولیه به عنوان پیشنیاز به حساب میاد.
#نقشه_راه #RoadMap #هوش_مصنوعی #AI
🔘 هوش مصنوعی برای هوشمندسازی ماشینها استفاده میشه و مزایا و فایدهها زیادی برای جامعه و انسان داره.
👈 گام اول- ریاضیات
🔘 همونطور که اکثر دانشجویان رشته کامپیوتر میدانند ریاضیات و به خصوص مباحث جبرخطی، دیفرانسیل، حسابان، ساختمان گسسته و آمار و احتمال توی این رشته و گرایش نقش بزرگی رو ایفا میکنند؛ چرا که ماشینها و کامپیوترها تنها راهی که میفهمند اعمال منطقی و ریاضیات است و برای این که ما برنامهها و اهداف خودمون رو به اون منتقل کنیم باید بهشون فعالیت منطقی و ریاضیات بدیم.
🔘 در نتیجه شما برای شروع در گرایش هوش مصنوعی و زیرشاخه آن که بخواین فعالیت کنید، ناچارید این دروس رو یاد بگیرید.
👈 گام دوم - برنامه نویسی
🔘 برنامه نویسی رکن اصلی تو زمینه هوش مصنوعی داره و شما قبل از تسلط به زبان برنامه نویسی، باید به ساختمان داده و طراحی الگوریتم که از دروس تخصصی کامپیوتر هستند مسلط شوید چرا که شرط لازم برای نوشتن یک برنامه درست و بهینه و با خطا کم، باید الگوریتم رو به درستی دانست تا بتواند باعث صرفهجویی و کارآمد بودن بیشتر یک کد رو داشته باشد.
🔘 از بین زبانهای برنامه نویسی که با هوش مصنوعی تعامل خوبی دارند، میتونیم به پایتون اشاره کنیم:
پایتون: به دلیل سادگی و داشتن پکیجهایی مثه sci-kit learn کار با این کتابخونه به طور عمده در زمینههای data mining و data analys است که طیف وسیعی از الگوریتمها یادگیری ماشین در اون تعبیه شده، که از محبوبترین زبانها برنامه نویسی است.
🔘 بعد از یادگیری مقدماتی زبان برنامه نویسی، باید شیوه کار کردن با کتابخانهها مختلف و مرتبط با هوش مصنوعی مثه numpy (کتابخونهای که به کمکش میتونیم روی دادههای عددیایی که در حافظه موجوده، عملیات مختلفی رو انجام بدیم) رو یاد بگیرید و بارها و بارها تمرین کنید که در استفاده از اون متخصص شوید.
👈 گام سوم - مباحث و فیلدهای هوش مصنوعی
🔘 بعد از این که از مباحث اولیه عبور کردید، باید یه دانش عمومی از هوش مصنوعی رو آموزش ببینید.
🔘 بعد از پیشرفت هوش مصنوعی، این رشته به زیر رشتههای مختلفی تقسیم شد که در عین ارتباطی که بین این زیرشاخهها وجود داره، در موارد تخصصی و هدفهای هر کدوم، تفاوتهای چشمگیری رو شاهد هستیم.
🔘 بسته به علاقه و استعداد خودتون میتونید هر کدوم از این زیرشاخهها رو انتخاب کنید که نقشه راه هر زیرشاخه با زیرشاخه دیگری تفاوت داره.
🔘 البته لازم به ذکر است که یکی دیگر از مهارتهایی که به پیشرفت شما در زمینه هوش مصنوعی کمک میکنه آشنایی کامل و تخصصی با زبان انگلیسی است چرا که به روز بودن و مطالعهی مقالات روز دنیا در این رشته اهمیت بالایی داره اکثر این مقالات به زبان انگلیسی است و از آنجا که یه فیلد در رشته کامپیوتر است دانستن زبان انگلیسی لازم است.
📌 ریاضیات و برنامه نویسی برای همه زیرشاخهها هوش مصنوعی موردنیازه و در واقع جز قدمهای اولیه به عنوان پیشنیاز به حساب میاد.
#نقشه_راه #RoadMap #هوش_مصنوعی #AI
➖ نقشه راه یادگیری هوش مصنوعی | AI
🔘 هوش مصنوعی برای هوشمندسازی ماشینها استفاده میشه و مزایا و فایدهها زیادی برای جامعه و انسان داره.
👈 گام اول- ریاضیات
🔘 همونطور که اکثر دانشجویان رشته کامپیوتر میدانند ریاضیات و به خصوص مباحث جبرخطی، دیفرانسیل، حسابان، ساختمان گسسته و آمار و احتمال توی این رشته و گرایش نقش بزرگی رو ایفا میکنند؛ چرا که ماشینها و کامپیوترها تنها راهی که میفهمند اعمال منطقی و ریاضیات است و برای این که ما برنامهها و اهداف خودمون رو به اون منتقل کنیم باید بهشون فعالیت منطقی و ریاضیات بدیم.
🔘 در نتیجه شما برای شروع در گرایش هوش مصنوعی و زیرشاخه آن که بخواین فعالیت کنید، ناچارید این دروس رو یاد بگیرید.
👈 گام دوم - برنامه نویسی
🔘 برنامه نویسی رکن اصلی تو زمینه هوش مصنوعی داره و شما قبل از تسلط به زبان برنامه نویسی، باید به ساختمان داده و طراحی الگوریتم که از دروس تخصصی کامپیوتر هستند مسلط شوید چرا که شرط لازم برای نوشتن یک برنامه درست و بهینه و با خطا کم، باید الگوریتم رو به درستی دانست تا بتواند باعث صرفهجویی و کارآمد بودن بیشتر یک کد رو داشته باشد.
🔘 از بین زبانهای برنامه نویسی که با هوش مصنوعی تعامل خوبی دارند، میتونیم به پایتون اشاره کنیم:
پایتون: به دلیل سادگی و داشتن پکیجهایی مثه sci-kit learn کار با این کتابخونه به طور عمده در زمینههای data mining و data analys است که طیف وسیعی از الگوریتمها یادگیری ماشین در اون تعبیه شده، که از محبوبترین زبانها برنامه نویسی است.
🔘 بعد از یادگیری مقدماتی زبان برنامه نویسی، باید شیوه کار کردن با کتابخانهها مختلف و مرتبط با هوش مصنوعی مثه numpy (کتابخونهای که به کمکش میتونیم روی دادههای عددیایی که در حافظه موجوده، عملیات مختلفی رو انجام بدیم) رو یاد بگیرید و بارها و بارها تمرین کنید که در استفاده از اون متخصص شوید.
👈 گام سوم - مباحث و فیلدهای هوش مصنوعی
🔘 بعد از این که از مباحث اولیه عبور کردید، باید یه دانش عمومی از هوش مصنوعی رو آموزش ببینید.
🔘 بعد از پیشرفت هوش مصنوعی، این رشته به زیر رشتههای مختلفی تقسیم شد که در عین ارتباطی که بین این زیرشاخهها وجود داره، در موارد تخصصی و هدفهای هر کدوم، تفاوتهای چشمگیری رو شاهد هستیم.
🔘 بسته به علاقه و استعداد خودتون میتونید هر کدوم از این زیرشاخهها رو انتخاب کنید که نقشه راه هر زیرشاخه با زیرشاخه دیگری تفاوت داره.
🔘 البته لازم به ذکر است که یکی دیگر از مهارتهایی که به پیشرفت شما در زمینه هوش مصنوعی کمک میکنه آشنایی کامل و تخصصی با زبان انگلیسی است چرا که به روز بودن و مطالعهی مقالات روز دنیا در این رشته اهمیت بالایی داره اکثر این مقالات به زبان انگلیسی است و از آنجا که یه فیلد در رشته کامپیوتر است دانستن زبان انگلیسی لازم است.
📌 ریاضیات و برنامه نویسی برای همه زیرشاخهها هوش مصنوعی موردنیازه و در واقع جز قدمهای اولیه به عنوان پیشنیاز به حساب میاد.
#نقشه_راه #RoadMap #هوش_مصنوعی #AI
🔘 هوش مصنوعی برای هوشمندسازی ماشینها استفاده میشه و مزایا و فایدهها زیادی برای جامعه و انسان داره.
👈 گام اول- ریاضیات
🔘 همونطور که اکثر دانشجویان رشته کامپیوتر میدانند ریاضیات و به خصوص مباحث جبرخطی، دیفرانسیل، حسابان، ساختمان گسسته و آمار و احتمال توی این رشته و گرایش نقش بزرگی رو ایفا میکنند؛ چرا که ماشینها و کامپیوترها تنها راهی که میفهمند اعمال منطقی و ریاضیات است و برای این که ما برنامهها و اهداف خودمون رو به اون منتقل کنیم باید بهشون فعالیت منطقی و ریاضیات بدیم.
🔘 در نتیجه شما برای شروع در گرایش هوش مصنوعی و زیرشاخه آن که بخواین فعالیت کنید، ناچارید این دروس رو یاد بگیرید.
👈 گام دوم - برنامه نویسی
🔘 برنامه نویسی رکن اصلی تو زمینه هوش مصنوعی داره و شما قبل از تسلط به زبان برنامه نویسی، باید به ساختمان داده و طراحی الگوریتم که از دروس تخصصی کامپیوتر هستند مسلط شوید چرا که شرط لازم برای نوشتن یک برنامه درست و بهینه و با خطا کم، باید الگوریتم رو به درستی دانست تا بتواند باعث صرفهجویی و کارآمد بودن بیشتر یک کد رو داشته باشد.
🔘 از بین زبانهای برنامه نویسی که با هوش مصنوعی تعامل خوبی دارند، میتونیم به پایتون اشاره کنیم:
پایتون: به دلیل سادگی و داشتن پکیجهایی مثه sci-kit learn کار با این کتابخونه به طور عمده در زمینههای data mining و data analys است که طیف وسیعی از الگوریتمها یادگیری ماشین در اون تعبیه شده، که از محبوبترین زبانها برنامه نویسی است.
🔘 بعد از یادگیری مقدماتی زبان برنامه نویسی، باید شیوه کار کردن با کتابخانهها مختلف و مرتبط با هوش مصنوعی مثه numpy (کتابخونهای که به کمکش میتونیم روی دادههای عددیایی که در حافظه موجوده، عملیات مختلفی رو انجام بدیم) رو یاد بگیرید و بارها و بارها تمرین کنید که در استفاده از اون متخصص شوید.
👈 گام سوم - مباحث و فیلدهای هوش مصنوعی
🔘 بعد از این که از مباحث اولیه عبور کردید، باید یه دانش عمومی از هوش مصنوعی رو آموزش ببینید.
🔘 بعد از پیشرفت هوش مصنوعی، این رشته به زیر رشتههای مختلفی تقسیم شد که در عین ارتباطی که بین این زیرشاخهها وجود داره، در موارد تخصصی و هدفهای هر کدوم، تفاوتهای چشمگیری رو شاهد هستیم.
🔘 بسته به علاقه و استعداد خودتون میتونید هر کدوم از این زیرشاخهها رو انتخاب کنید که نقشه راه هر زیرشاخه با زیرشاخه دیگری تفاوت داره.
🔘 البته لازم به ذکر است که یکی دیگر از مهارتهایی که به پیشرفت شما در زمینه هوش مصنوعی کمک میکنه آشنایی کامل و تخصصی با زبان انگلیسی است چرا که به روز بودن و مطالعهی مقالات روز دنیا در این رشته اهمیت بالایی داره اکثر این مقالات به زبان انگلیسی است و از آنجا که یه فیلد در رشته کامپیوتر است دانستن زبان انگلیسی لازم است.
📌 ریاضیات و برنامه نویسی برای همه زیرشاخهها هوش مصنوعی موردنیازه و در واقع جز قدمهای اولیه به عنوان پیشنیاز به حساب میاد.
#نقشه_راه #RoadMap #هوش_مصنوعی #AI
🤔معرفی کتابخونههای محبوب پایتون برای دیتاساینس و ماشینلرنینگ
پایتون به دلیل تطبیق پذیری، سهولت استفاده و اکوسیستم غنی از کتابخانه ها که به جنبه های مختلف این حوزهها پاسخ می دهد، به زبان برنامه نویسی محبوب مورد استفاده برای علم داده و یادگیری ماشین تبدیل شده است. در اینجا تعدادی از محبوب ترین و ضروری ترین کتابخانه های پایتون برای علم داده و یادگیری ماشین را معرفی میکنیم:
کتابخانه NumPy: پایه محاسبات عددی در پایتون است. پشتیبانی از آرایهها و ماتریسهای چندبعدی بزرگ، همراه با انواع توابع ریاضی برای عملکرد مؤثر بر روی این آرایهها را فراهم میکند. یک کتابخانه اساسی برای انجام محاسبات علمی است.
کتابخانه: Pandas: یک کتابخانه قدرتمند دستکاری و تجزیه و تحلیل داده هاست. این کتابخانه ساختارهای داده مانند DataFrames و Series را ارائه می دهد که تمیز کردن، تبدیل و تجزیه و تحلیل داده های جدولی را آسان می کند. Pandas برای پیش پردازش داده ها و تجزیه و تحلیل داده های اکتشافی بسیار مهم است.
کتابخانه Matplotlib: یک کتابخانه پرکاربرد برای ایجاد تجسم و نمودار در پایتون است. انواع نمودارهای قابل تنظیم را ارائه می دهد تا به شما کمک کند داده های خود را نمایش دهید و یافته های خود را به طور موثر ارائه دهید.
کتابخانه Seaborn: مبتنی بر Matplotlib ساخته شده است و یک رابط سطح بالاتر برای ایجاد تصاویر آماری جذاب ارائه می دهد. این کتابخانه فرآیند ایجاد تجسم های پیچیده را ساده می کند و تم های پیش فرض شیک را ارائه می دهد.
کتابخانه Scikit-learn: یک کتابخانه یادگیری ماشین است که ابزارهایی را برای طبقه بندی، رگرسیون، خوشه بندی، کاهش ابعاد و موارد دیگر ارائه می دهد. یک کتابخانه کاربرپسند برای پیاده سازی و آزمایش الگوریتم های یادگیری ماشین است.
فریم ورک TensorFlow: یک چارچوب یادگیری ماشین منبع باز است که توسط گوگل توسعه یافته است. در درجه اول برای ساخت و آموزش شبکه های عصبی عمیق برای کارهایی مانند تشخیص تصویر، پردازش زبان طبیعی و موارد دیگر استفاده می شود.
کتابخانه Keras: یک کتابخانه منبع باز است که یک رابط کاربر پسند برای طراحی سریع و آموزش مدل های یادگیری عمیق ارائه می دهد.
کتابخانه PyTorch: یکی دیگر از فریمورکهای یادگیری عمیق محبوب مبتنی بر کتابخانه Torch است که برای کاربردهایی مانند بینایی کامپیوتر و پردازش زبان طبیعی استفاده میشود و توسط Meta AI توسعه یافته است.
کتابخانه NLTK: کتابخانه ای برای پردازش زبان طبیعی و تجزیه و تحلیل متن است. ابزارها و منابعی را برای توکنسازی، stemming، برچسبگذاری و موارد دیگر ارائه میکند که آن را برای کار با دادههای متنی ضروری میکند.
🔺این پست رو ChatGPT نوشته!
#AI
🐰
پایتون به دلیل تطبیق پذیری، سهولت استفاده و اکوسیستم غنی از کتابخانه ها که به جنبه های مختلف این حوزهها پاسخ می دهد، به زبان برنامه نویسی محبوب مورد استفاده برای علم داده و یادگیری ماشین تبدیل شده است. در اینجا تعدادی از محبوب ترین و ضروری ترین کتابخانه های پایتون برای علم داده و یادگیری ماشین را معرفی میکنیم:
کتابخانه NumPy: پایه محاسبات عددی در پایتون است. پشتیبانی از آرایهها و ماتریسهای چندبعدی بزرگ، همراه با انواع توابع ریاضی برای عملکرد مؤثر بر روی این آرایهها را فراهم میکند. یک کتابخانه اساسی برای انجام محاسبات علمی است.
کتابخانه: Pandas: یک کتابخانه قدرتمند دستکاری و تجزیه و تحلیل داده هاست. این کتابخانه ساختارهای داده مانند DataFrames و Series را ارائه می دهد که تمیز کردن، تبدیل و تجزیه و تحلیل داده های جدولی را آسان می کند. Pandas برای پیش پردازش داده ها و تجزیه و تحلیل داده های اکتشافی بسیار مهم است.
کتابخانه Matplotlib: یک کتابخانه پرکاربرد برای ایجاد تجسم و نمودار در پایتون است. انواع نمودارهای قابل تنظیم را ارائه می دهد تا به شما کمک کند داده های خود را نمایش دهید و یافته های خود را به طور موثر ارائه دهید.
کتابخانه Seaborn: مبتنی بر Matplotlib ساخته شده است و یک رابط سطح بالاتر برای ایجاد تصاویر آماری جذاب ارائه می دهد. این کتابخانه فرآیند ایجاد تجسم های پیچیده را ساده می کند و تم های پیش فرض شیک را ارائه می دهد.
کتابخانه Scikit-learn: یک کتابخانه یادگیری ماشین است که ابزارهایی را برای طبقه بندی، رگرسیون، خوشه بندی، کاهش ابعاد و موارد دیگر ارائه می دهد. یک کتابخانه کاربرپسند برای پیاده سازی و آزمایش الگوریتم های یادگیری ماشین است.
فریم ورک TensorFlow: یک چارچوب یادگیری ماشین منبع باز است که توسط گوگل توسعه یافته است. در درجه اول برای ساخت و آموزش شبکه های عصبی عمیق برای کارهایی مانند تشخیص تصویر، پردازش زبان طبیعی و موارد دیگر استفاده می شود.
کتابخانه Keras: یک کتابخانه منبع باز است که یک رابط کاربر پسند برای طراحی سریع و آموزش مدل های یادگیری عمیق ارائه می دهد.
کتابخانه PyTorch: یکی دیگر از فریمورکهای یادگیری عمیق محبوب مبتنی بر کتابخانه Torch است که برای کاربردهایی مانند بینایی کامپیوتر و پردازش زبان طبیعی استفاده میشود و توسط Meta AI توسعه یافته است.
کتابخانه NLTK: کتابخانه ای برای پردازش زبان طبیعی و تجزیه و تحلیل متن است. ابزارها و منابعی را برای توکنسازی، stemming، برچسبگذاری و موارد دیگر ارائه میکند که آن را برای کار با دادههای متنی ضروری میکند.
🔺این پست رو ChatGPT نوشته!
#AI
🐰