Клуб CDO
3.1K subscribers
380 photos
24 videos
88 files
1.44K links
Сообщество профессионалов в области работы с данными и искуственным интеллектом
Download Telegram
​​Отставание России от США в области ИИ уже колоссально.
А через несколько лет оно увеличится до трёх километров.

Так уж получилось, что прогресс в области ИИ во многом определяется наличием огромных вычислительных мощностей, требуемых для обучения гигантских нейросетей-трансформеров.
Грег Брокман (соучредитель и СТО OpenAI) формулирует это так:
«Мы думаем, что наибольшую выгоду получит тот, у кого самый большой компьютер».
Я уже демонстрировал, насколько критично наличие мощного компьютинга для обучения Больших моделей в посте «Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке».

Место России на карте мира по вычислительной мощности суперкомпьютеров более чем скромное. В списке ТОР500 суперкомпьютеров на этот год у США 149 систем, а у России 7. При этом, только одна из систем США по своей производительности превышает производительность всех российских систем (см. мой пост). Председатель оргкомитета суперкомпьютерного форума России, д.ф.м.н, член-корр. РАН Сергей Абрамов оценивает отставание России от США в области суперкомпьютинга примерно в 10 лет.

Но в области обучения больших моделей для ИИ-приложений ситуация еще хуже. Здесь мало вычислительной мощности обычных серверов и требуются специальные ускорители вычислений. Спецы по машинному обучению из Яндекса это комментируют так.
«Например, если обучать модель с нуля на обычном сервере, на это потребуется 40 лет, а если на одном GPU-ускорителе V100 — 10 лет. Но хорошая новость в том, что задача обучения легко параллелится, и если задействовать хотя бы 256 тех же самых V100, соединить их быстрым интерконнектом, то задачу можно решить всего за две недели.»

Поэтому, показатель числа GPU-ускорителей в вычислительных кластерах разных стран (общедоступных, частных и национальных) позволяет оценивать темпы развития систем ИИ в этих странах. Актуальная статистика данного показателя ведется в State of AI Report Compute Index. Состояние на 20 ноября приведено на приложенном рисунке, куда я добавил данные по пяти крупнейшим HPC-кластерам России (разбивка по public/private – моя оценка).

Из рисунка видно, что обучение больших моделей, занимающее на HPC-кластере всем известной американской компании дни и недели, будет требовать на HPC-кластере Яндекса месяцев, а то и лет.

Но это еще не вся беда. Введенные экспортные ограничения на поставку GPU-ускорителей в Россию и Китай за несколько лет многократно увеличат отрыв США в области обучения больших моделей для ИИ-приложений.
И этот отрыв будет измеряться уже не годами и даже не десятилетиями, а километрами, - как в старом советском анекдоте.
«Построили у нас самый мощный в мире компьютер и задали ему задачу, когда же наступит коммунизм. Компьютер думал, думал и выдал ответ: "Через 3 километра". На требование расшифровать столь странный ответ компьютер выдал:
— Каждая пятилетка — шаг к коммунизму.»

#ИИ #HPC #Россия #ЭкспортныйКонтроль