CatScience
4.17K subscribers
795 photos
8 videos
1 file
353 links
Доступно и увлекательно обо всем, от биологии до криминалистики. Телеграм-канал паблика ВКонтакте "CatScience".

Бот для связи @cat0science_bot

Если вы хотите поддержать наш канал, у нас есть карта: 2202 2021 2782 2322 (Сбер). Мур!
Download Telegram
Видный ученый.
Кратер, но не Скиапарелли.
Зонд но не Розетта.
7 букв, но не Кассини.
Ньютону очень нравилось, что делает этот голландец.

Правильно! Это простой голландский механик, а по совместительству изобретатель, математик, физик, астроном, а в дальнейшем кратер на Луне и космический зонд, Христиан Гюйгенс (1629-1695).

В бытовом смысле Гюйгенс присутствует в жизни каждого из нас, поскольку в 1657 он создал свои “маятниковые часы”. Да, идея подсчета количества колебаний маятника была уже известна, да, маятники тогда уже делать умели, да, Галилей с сыном часы с маятником создали еще раньше, правда втайне ото всех. Но именно Гюйгенс доводя свою конструкцию еще почти 40 лет, добился погрешности в 10 секунд в сутки: для конца 17 века - выдающееся достижение, а затем смог в портативность, заменив груз в своих часах пружиной. И пусть механических часов в мире стало меньше, свою роль они сыграли.

Значимость Гюйгенса для науки и техники в целом огромна, потому что открывал и изобретал он натурально с двух рук: открыл кольца Сатурна и его спутник Титан, положил начало теоретической механике, изучал волновую оптику, написал труд по теории вероятности в виде книги по игре в кости, собственно и основы механики как раздела физики заложил тоже он, а Ньютон уже обобщил и развил. Монументального масштаба ученый с огромным наследием. Так что, встретив в кроссворде вопрос “Учёный, 7 букв, первая Г” не зацикливайтесь на Галилее, напишите Гюйгенс, вдруг подойдет.

Фото:
1) Христиаан Гюйгенс ван Зёйлихем
2) Лунный кратер Гюйгенс
3) Зонд Гюйгенс миссии "Кассини-Гюйгенс"
4) Именно в такой телескоп смотрел виновник торжества, когда открывал кольца Сатурна и Титан. У Галилея был меньше.
5) Христиан и часы, а так же часы без Христиана
6) Маятниковые часы Гюйгенса, вроде бы сумрачно, но заявленная погрешность в 10 секунд в сутки впечатляет.
7) Ходики как они есть: гирьки, цепочки, маятник. Схема уже не такая как была у Гюйгенса, но принцип тот же

#Чечеткин
#физика
#рыцари_науки
🔥22👍5🦄1
😁58🦄3🔥2
1/2

Совершил революцию в науке, но никто этого не помнит.

Вот так коротко можно описать историю Н.С. Кардашёва. Так что за революцию он совершил? Для этого придется рассказать об радиотелескопах. Штука эта состоит из двух основных частей: антенны (оно же зеркало), принимающей сигнал, и радиометра - чувствительного приемника с усилителем. Параболическая (в форме тарелки) антенна собирает упавшие на нее радиоволны, испускаемые небесным телом, в одной точке - фокусе. Когда через одну точку проходит несколько радиоволн, они складываются и благодаря форме антенны сигнал усиливается, в фокусе возникает яркое пятно, а радиометр и прочая аппаратура измеряет сигнал и переводит его в удобный для исследователей вид. На этом основано функционирование всех зеркальных телескопов.

Радиотелескопы могут работать в любую погоду, днем и ночью, способны наблюдать небесные тела за пылевыми облаками да и еще работают в радиодиапазоне, что позволяет наблюдать более отдаленные и древние объекты, в общем, ахуенная вещь, отправляем в помойку оптические телескопы, что служат нам со времен Коперника! Увы, у радиотелескопов есть серьезный недостаток — малая разрешающая способность. Чтобы понять, насколько с этим все плохо: параболическая антенна с диаметром 5 метров при длине волны 1 метр (да, радиоволна очень длинная) способна разделить два объекта, только если они удалены друг от друга более чем на 10 градусов, это двадцать диаметров ЛУНЫ! Конечно, можно увеличить размер антенны, но делать это вечно не получится: из-за возрастающей стоимости и того, что зеркала в какой-то момент начнут деформироваться под собственным весом. Стоит учесть еще одну особенность: радиотелескопы не получают изображение. Они могут получать только информацию об интенсивности сигнала от того источника, куда направлена антенна. То есть результат одного замера сигнала дает один-единственный пиксель будущего изображения. Интенсивность радиоисточника называется яркостью, и радиотелескопы занимаются замером яркости различных точек источника. Из данных о яркости различных точек потом можно составить схематичное изображение, как это, например, делает матричный принтер. Поэтому радиотелескопы были аутсайдерами в исследовании космоса, пока не появился Николай Семенович Кардашёв.

Он решил, а зачем, простите, нахуя сводить все радиоволны в одну точку, ведь можно это имитировать. Следите за руками: разные радиотелескопы (минимум 3 штуки) ловят излучение какого-нибудь одного объекта независимо друг от друга, при помощи атомных часов измеряют точное время получения сигнала и отправляют эти данные на компьютер, а тот в свою очередь делает поправки в измерениях, считая, какое расстояние оставалось пройти радиосигналу до воображаемого фокуса (называется сиё чудо человеческого ума интерферометром). Разрешение такого телескопа определяется уже не общей площадью его антенн, а расстоянием между ними (называется оно базой). Таким образом создали интерферометр со сверхдлинной базой - более 12 тысяч километров, по разрешающей способности он в 100 раз превышал возможности телескопа Хаббл. И казалось бы, куда дальше? И тут снова появляется Кардашёв! На этот раз со своим проектом космического радиотелескопа — Радиоастрон.
🔥25👍7🫡5👎1
2/2

Разработка телескопа, что в будущем даст невероятные возможности для наблюдения, началась еще в 1978 году. Николай Семенович был не только автором идеи, но и лидером по разработке космического аппарата. Увы, космос штука сложная, и разработка Радиоастрона затянулась, и запуск не состоялся из-за развала СССР и проблем с финансированием. А в 1997 году японцы запустили HALCA — наземно-космический интерферометр по задумке и реализации очень схожий с проектом Николая. Очень неприятно, когда ты создал современную радиоастрономию, первым начал создавать космический радиотелескоп, а опередили тебя какие-то азиаты. Наверное, так подумал наш герой и решил полностью перекроить орбиту спутника, увеличив ее до 340 тысяч километров(для справки - расстояние до Луны 390 тыс. км.). Благодаря этому максимальное разрешение составляло 8 угловых микросекунд, это все равно что вы смогли бы увидеть спичечный коробок на поверхности Луны своими глазами! В общем, после еще нескольких лет активной работы космический аппарат вывели на орбиту в 2011 (Кардашёву на тот момент уже 81 год), и проработал он до февраля 2019, а в августе того же года ушел из жизни и его создатель. За 7,5 лет активных наблюдений интерферометр провел более 4-х тысяч наблюдений и исследовал несколько сотен астрономических объектов: квазары, черные дыры, нейтронные звезды, ядра галактик, уточнил форму джетов (струи плазмы, вырывающиеся из центра галактик), измерил температуру различных объектов и так много чего еще, что ученым осталось около 4 млн. гигабайт данных для анализа.

Но запомнился Кардашёв по своей шкале цивилизаций. И она очень странная.

Суть в чем, есть три типа цивилизаций:
- Первый тип: потребляет количество энергии сравнимое с тем, что получает его родная планета от светила;
- Второй потребляет энергию на уровне которое вырабатывает местное Солнце;
- Третий потребляет кол-во энергии на уровне целой галактики.

Тут сразу возникает куча вопросов — почему цивилизация должна потреблять все больше и больше энергии и как это коррелирует с ее развитостью; почему между вторым и третьим типом цивилизаций огромная пропасть в потреблении; и почему эту шкалу используют как мерило развития? Да потому что используют ее неправильно! Появилась эта шкала в короткой статье “Передача информации внеземным цивилизациям” из сборника “Внеземные цивилизации”, который является фантазией и предположением астрономов как обнаружить собственно инопланетян.* И добавлена была эта шкала Кардашёва только для того, чтобы прикинуть, сколько энергии может потратить цивилизация при определенном уровне потребления на посылание мощных радиосигналов.

Выходит, что Николай Семенович Кардашёв произвел революцию в астрономии идеей и созданием интерферометров, а потом сам развил ее, создав космический интерферометр рекордных размеров и еще много чего “по мелочи”. Но запомнили его не за это, а за одноимённую шкалу. Почему так? Да я хз

#Конюхов
#астрономия
#архив
🔥40🫡10👍6
1) Схема простого радиоинтерферометра
2) Сам Радиоастрон. Его зеркало в диаметре около 10 метров, сделать так чтобы оно полностью раскрылось уже инженерный подвиг. Для сравнения у Джеймса Уэбба диаметр зеркала 6,5 метров
3) Схема работы Радиоастрона(угловое расширение, правда указано не максимальное)
4) Желтым цветом показан джет блазара, снятый наземным радиоинтерферометром, синими контурами Радиоастроном. Почувствуй разницу!
🔥25👍5🫡4
Отсель я начинаю цикл статей и заметок, посвященных деятелям российской (и не только) науки. Начну с истории появления науки и Академии Наук при Петре I и с первого президента Академии — Лаврентия Блюментроста.

https://telegra.ph/Istoriya-rossijskoj-nauki-chast-1-iz-n-07-24

P.S. Как и все циклы, этот будет выходить по субботам!

#Прихно
#история_науки
#история_РАН
#лонг
🔥18👍61
Всем нам хорошо известна такая дрянь, как борщевик. Он со страшной скоростью покрывает любые заброшенные поля, кюветы и так далее. Если нечаянно прикоснуться к нему в солнечный день – ожоги и волдыри гарантированы. Хм, что-то мне это напоминает. Что-то чуть больше века назад…

ВНЕЗАПНО, параллель между борщевиком и ипритом не высосана из пальца, а механизмы их токсического действия весьма близки друг другу.

Иприты (да, иприт – это не одно вещество, а целая их серия, есть азотные, кислородные и серные иприты) являются сильными алкилирующими агентами – они реагируют с различными реакционноспособными атомами органических соединений (всякие там аминные или спиртовые группы), сбрасывая с себя атом хлора и вешаясь на эти самые реакционноспособные группы длинными цепочками из углерода. Как нетрудно догадаться, глядя на формулу ипритов, они отлично сшивают две реакционноспособные группы друг с другом. А дальше мы глядим на формулу азотистых оснований ДНК и понимаем, что они будут офигительно вступать в реакцию с ипритом, создавая в рандомных местах генетического кода сшивки между основаниями.

Эти самые сшивки в геноме являются, по сути, битыми ячейками генетической памяти клетки. Конечно, у любого живого существа в наличии мешок механизмов очистки памяти от ошибок, но все они имеют ограниченную работоспособность. Поток ошибок, вызванных отравлением ипритами, перегружает их, что и приводит к наблюдаемой картине отравления, канцерогенезу и всяким прочим «веселым» последствиям.

Что любопытно, уже существующие раковые клетки обращаются к геному куда чаще здоровых, поэтому отравление ипритами их косит значительно раньше, чем проявляется общая картина отравления. Собственно, именно поэтому один из видов иприта стал одним из первых агентов для химиотерапии опухолей под названием "хлорметин" или "эмбихин".

А что борщевик?

А борщевик действует куда хитрее. Фуранокумарины, содержащиеся в нем, сами по себе нетоксичны. Такие молекулы плоские, а распределение электронов в них таково, что максимумы электронной плотности находятся над и под плоскостью молекулы. За счет этого они способны вступать в слабую (даже не химическую) связь с другими схожими молекулами.

Что мы видим дальше? А дальше мы видим, что в ДНК куча плоских азотистых оснований, еще и более-менее параллельных друг другу и в дополнение к основной цепочке с чисто химической связью связанных именно по такому механизму (так называемые стэкинговые взаимодействия). Как нетрудно догадаться, фуранокумарины влезают между азотистыми основаниями. Сила взаимодействия между ними малая, процесс обратим, все хорошо…

До тех пор, пока не прилетает фотон в ультрафиолетовом диапазоне (от Солнышка, например). Такие циклические системы, как фуранокумарины, круто меняют свою реакционную способность после поглощения фотона. Дальше происходит абсолютно то же самое, что и с ипритами. Результат предсказуемо тот же. Что лично мне интересно — а не приводит ли отравление борщевиком к раку на долгосроке, изучал ли кто-то этот вопрос?

1) Собственно, борщевик
2) Ожоги от отравления ипритом
3) Формула ипритов. X = N, S, O, количество углеродных фрагментов и количество атомов углерода в них может в каких-то пределах меняться
4) Нуклеотидные основания ДНК с реакционноспособными атомами азота
5) Формула хлорметина/эмбихина, он же один из видов азотного иприта
6) А вот такая вот дрянь содержится в борщевике
7) Стэкинг-взаимодействия между соседними парами азотистых оснований в ДНК

#Прихно
#химия
🔥24🤯174👍2👏21
Однажды, сидя на крылечке отчего дома и перелистывая сборник фантастических рассказов, наткнулся на произведение про бессмертного солдата, воюющего с Нового времени и никак не могущего умереть. По его словам, в одной из битв ему раскроило череп и добрый Айболит в целях эксперимента влил ему в башку смесь из меда, розового масла и яиц. С тех пор неубиваемый бедолага скитается по свету и принимает участие во всех войнах, что вызывает сомнения в его интеллектуальных способностях. Видимо, доктор вылечил скорбную головушку не до конца. Через четверть века я узнал, что ответственным за это безобразие выступал реальный исторический персонаж.

В этой статье Максим #Ковлягин расскажет, зачем в пулевые ранения раньше заливали кипящее масло и как один парикмахер цирюльник Амбруаз Паре смог устроить революцию в европейской медицине, просто применив критическое мышление.

https://telegra.ph/O-pobede-racionalizma-nad-sholastikoj-v-medicine-07-31

#лонг
#медицина
🔥53👍153
CatScience pinned «Всем привет! На связи снова админ вашего любимого канала и в этот раз я к вам с просьбой — нашему каналу нужны бусты и вы можете их дать. Нам за это дадут плюшки, которые помогут сделать наш контент интересней и, потенциально, донести его до большей аудитории.…»