Ivan Begtin
7.99K subscribers
1.82K photos
3 videos
101 files
4.53K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
Свежий любопытный BI(?) проект MotherDuck Data App Generator [1] который позволяет на основе датасета в DuckDB генерировать дата приложение. Приложение с открытым кодом, но зависит от инфраструктуры MotherDuck.

Хотя они и называют его Data App Generator, тут надо быть честными, это такой недо-BI, по крайней мере в текущей форме и примерах по генерации дашбордов.

Мне, честно говоря, показалось странным что они сделали такое, потому что визуализация данных не самая сильная сторона их команды, Mother Duck известны продуктом для облачной аналитики, но не BI. Но в итоге они, похоже, выбирают путь прокачки собственного продукта, а не интеграции с другими, предлагая свой продукт как бэкэнд.

В любом случае идея по генерации приложений на данных имеет право на существование и даже может быть весьма востребована.

Если бы я не был занят Dateno и поиском данных, я бы автоматизацию аналитики ставил бы где в верхней части своих приоритетов, потому что это большая рыночная востребованная тема.

Ссылки:
[1] https://motherduck.com/blog/data-app-generator/

#opensource #duckdb #data #dataapps #startups
Ещё один любопытный ETL продукт VectorETL [1] с открытым кодом под MIT лицензией. Необычен тем что:
a) Включает AI в паплайны обработки данных
б) Изначально ориентирован на векторные (NoSQL) базы данных

Опубликован стартапом Context Data которые предоставляют облачную платформу для задач которые с помощью этого ETL решаются.

Документации немного, но сам продукт любопытный. И попробовать, и почерпнуть идеи.

Ссылки:
[1] https://github.com/ContextData/VectorETL

#opensource #dataengineering
Неплохая подборка примеров проектов в том что называют Rewrite Bigdata in Rust (RBiR) [1], а то есть по переписыванию функциональности и отдельных продуктов с открытым кодом на Rust, вместо Python или Java.

Подборка хорошая и примеры там все как один вполне применимые к инфраструктуре практически любого дата-продукта.

А самое главное что у Rust и Python хорошая интеграция, можно заменять какие-то компоненты без болезненной адаптации проекта в целом.

Ссылки:
[1] https://xuanwo.io/2024/07-rewrite-bigdata-in-rust/

#opensource #rust #bigdata #datatools #data
В блоге Clickhouse о том как ускорять запросы в Pandas в 87 раз [1], что, с одной стороны неплохо, а с другой стороны лукавство. Потому что есть Polars, Daft и, конечно, DuckDB. То что chDB может ускорить приведенный пример запросов в 87 раз - вполне можно поверить, но другие то продукты и побыстрее могут.

В общем, в плане технологического евангелизма тут какой-то провал, из рассказов про chDB я вижу только один резон применять его, если вся инфраструктура построена на Clickhouse и есть люди в команде поднаторевшие в оптимизации Clickhouse.

А в данном конкретном случае всё выглядит довольно сомнительно в плане выгоды от применения продукт без рассмотрения альтернатив.

Ссылки:
[1] https://clickhouse.com/blog/chdb-pandas-dataframes-87x-faster

#opensource #clickhouse #datatools
Ещё один полезный для чтения текст Open Source is not a Business Model
[1] в сторону продвижения Fair Source [2] как открытие кода с ограничениями не мешающими на нём зарабатывать.

Лично я считаю что Fair Source - это модель вполне имеющая право на существование. Станет популярной - хорошо, не станет - тоже хорошо.

Острота в дискуссиях об открытом коде возникает когда проекты меняют лицензию. Вроде того же Elastic с их прыжками по лицензиям, туда и обратно. Что не отменяет качество самого продукта, отметим.

Ссылки:
[1] https://cra.mr/open-source-is-not-a-business-model
[2] https://fair.io

#opensource #readings #softwaredevelopment
Симпатичный продукт для тетрадок работы с данными Briefer [1], обещают поддержку Python и SQL, генерацию Data apps, ИИ помощника и построение дашбордов.

Поддерживаются Y Combinator и даже с открытым кодом и ещё интереснее их рассказ о том почему они с открытым кодом и каково это открывать код когда тебя финансируют венчурный фонд [3]. Ожидаемо там про выбор AGPL лицензии.

Ссылки:
[1] https://briefer.cloud/
[2] https://github.com/briefercloud
[3] https://briefer.cloud/blog/posts/launching-briefer-oss/

#opensource #datatools #data
Яндекс запустили аналог досок Miro в виде продукта Яндекс.Концепт [1], это новость, хорошая, даже не в рамках импортозамещения, а то что MIro в какой-то момент стал неоправданно дорогим продуктом. Я лично какое-то время Miro пользовался, но где-то в 2021 году почти перестал.

Из плюсов:
- есть перенос из Miro, автоматизированный
- практически бесплатное использование на сегодняшний момент

Из минусов:
- функциональности поменьше
- не все доски импортируется, у меня не перенеслись примерно 50%, почти все они это майндмапы вроде того что на картинке.

А чтобы два раза не писать, альтернативы с открытым кодом:
- Jitsu Meet [2] если нужно совмещение с системой звонков

А также:
- https://github.com/toeverything/AFFiNE
- https://github.com/penpot/penpot
- https://github.com/excalidraw/excalidraw
- https://github.com/tldraw/tldraw

P.S. Кстати, системная проблема со всеми продуктами в этой области в отсутствии универсального формата/стандарта. Если выбираешь инструмент, то переносить из него потом очень непросто.

Ссылки:
[1] https://yandex.ru/company/news/01-12-09-2024
[2] https://jitsi.org/jitsi-meet/

#whiteboards #miro #alternatives #opensource
Полезные ссылки про данные, технологии и не только:
- Governing data products using fitness functions [1] полезная статья с определением того что такое Data Product и как ими управлять, в первую очередь с архитектурной точки зрения.
- UIS Data Browser [2] новый каталог данных (статистики) ЮНЕСКО, данных немного, но есть API и массовая выгрузка.
- Why is language documentation still so terrible? [3] гневная статья где автор ругает все языки программирования кроме Rust. Претензий много и я с ним согласен и не только в отношении языков. Хорошую документацию на SDK или open source продукты встретишь нечасто.
- How We Made PostgreSQL Upserts 300x Faster on Compressed Data [4] про оптимизацию загрузки данных в PostgreSQL с помощью TimescaleDB, лично я не видел этот движок в работе, но для каких-то задач он может быть именно тем что нужно
- ImHex [5] шестнадцатеричный редактор с открытым кодом для реверс инжиниринга. На мой взгляд мало что заменит IDA Pro, но для задач не требующих хардкора и когда нет денег вполне себе полезный инструмент.

Ссылки:
[1] https://martinfowler.com/articles/fitness-functions-data-products.html#ArchitecturalCharacteristicsOfADataProduct
[2] https://databrowser.uis.unesco.org/
[3] https://walnut356.github.io/posts/language-documentation/
[4] https://www.timescale.com/blog/how-we-made-postgresql-upserts-300x-faster-on-compressed-data/
[5] https://github.com/WerWolv/ImHex

#opensource #data #datacatalogs #documentation #dbs
Пишут что PostgreSQL 17 может заменить NoSQL базы данных [1] потому что умеет грузить безсхемные JSON документы и обзавёлся несколькими функциями для работы с JSON документами. Новости прекрасная, если там всё так хорошо как описано, то это есть на чём проверить, очень хочется качественного сравнения с MongoDB и другими NoSQL СУБД построенными по модели хранения документов (MongoDB, ArangoDB и др), а также поисковые СУБД вроде Elastic, Meilisearch и тд.

Во многих СУБД есть поддержка JSON, но они оказываются весьма придирчивы к содержанию загружаемых документов. Потому и интересно как это сейчас в PostgreSQL.

И, в дополнение, полезный текст Postgres is eating the database world [2] о том как PostgreSQL вырос в мощную экосистему за последние годы.

Ссылки:
[1] https://www.linkedin.com/posts/mehd-io_the-last-release-of-postgresql-17-silently-activity-7250122811581640706-RLBD
[2] https://medium.com/@fengruohang/postgres-is-eating-the-database-world-157c204dcfc4

#data #opensource #postgresql
Со стороны и не скажешь, но всю жизнь я лично был большим фанатом командной строки. Потому что печатать быстрее и удобнее чем кликать в интерфейсе, а визуальное растровое отображение элементов интерфейса нужно, на самом деле, очень редко.

Тем больше меня радует начавшийся ренессанс TUI (Text User Interface) приложений, в виде командной строки или в виде интерактивных, но текстовых, инструментов которые можно запускать локально или на терминале.

Поэтому подборка полезного open source с командной строкой и TUI:
- stu [1] текстовый навигатор (TUI) для корзин s3. Удобно для тех кто любит командную строку и работу с серверами через терминал. Работает на базе движка ratatui [2] для Rust, помогающего быстро создавать текстовые приложения.
- csvlens [3] ещё одна утилита с текстовым интерфейсом для манипуляции с CSV файлами. Тоже на базе ratatui. Кстати, стоит посмотреть галерею других TUI приложения, там много полезного [4]
- goaccess [5] текстовый интерфейс для анализатора логов веб сервера в реальном времени.
- visidata [6] текстовый интерфейс для просмотра табличных данных в разных форматах
- htop [7] альтернатива top, монитору процессов для Unix.

Ссылки:
[1] https://github.com/lusingander/stu
[2] https://github.com/ratatui/ratatui
[3] https://github.com/YS-L/csvlens
[4] https://ratatui.rs/showcase/apps/
[5] https://github.com/allinurl/goaccess
[6] https://github.com/saulpw/visidata
[7] https://github.com/htop-dev/htop/

#cli #commandline #opensource #tools #datatools