Ivan Begtin
7.99K subscribers
1.82K photos
3 videos
101 files
4.53K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
Большая волна поднимает все корабли, но кто-то должен поднять эту большую волну.

Майкрософт объявил о старте кампании Closing the Data Divide: The Need for Open Data [1] (Закрывая неравенство в данных: Потребность в открытых данных) по популяризации открытости данных и по глобальному продвижению этой концепции. На фоне того что открытость данных, открытость государств начала отступать в мире, того что правительства стали если не отказываться, то забывать про обязательства открытости, инициатива со стороны одной из крупнейших цифровых корпораций - это, безусловно, хорошая новость.

И хороша она не только тем что именно Microsoft его запускает, а тем что Microsoft, Google, Amazon и другие цифровые лидеры умеют договариваться когда им это выгодно, и очень хочется надеяться на то что они сформируют собственное партнёрство по продвижению открытых данных.

Подробнее в блоге Microsoft [2]

Ссылки:
[1] https://news.microsoft.com/opendata/
[2] https://blogs.microsoft.com/on-the-issues/2020/04/21/open-data-campaign-divide/

#opendata #microsoft
В рубрике больших наборов данных команда Microsoft Bing опубликовала наборы данных со сведениями о зданиях [1] под открытой лицензией Open Data Commons Open Database License (ODbL) используемой в OpenStreetMap.

Наборы данных включают:
- США - 129.6 миллиона зданий
- Нигерия и Кения - 50.5 миллиона зданий
- Южная Африка - 44.5 миллиона зданий
- Уганда и Танзания - 17.9 миллионов зданий
- Канада - 11.8 миллионов зданий
- Австралия - 11.3 миллионов зданий

Это очень большое раскрытие данных, около сотни гигабайт в распакованном виде в формате GeoJSON.

P.S. Хотелось бы чтобы они так разметили и законтрибьютили данные по России, но подозреваю что в России так много конфликтов вокруг секретности геоданных что на это Microsoft не пойдет.

Ссылки:
[1] https://blogs.bing.com/maps/2022-01/New-and-updated-Building-Footprints/

#opendata #microsoft
Microsoft выпустили Open Data Social Framework [1] большой документ в помощь тем кто собирается достигать общественных и социальных целей с использованием открытых данных. Авторы его Open Data Policy Lab и сам документ подготовлен в рамках вот уже 2-х летней программы.

Microsoft молодцы в последовательной политике открытости, многие опасались что Github'у сильно похужеет после покупки и что компания, в принципе, не про открытость. Но в части открытых данных они и другие BigTech компании делают много полезного. Конечно, всегда не так много как хотелось бы, но много.

Ссылки:
[1] https://news.microsoft.com/open-data-social-impact-framework/

#opendata #microsoft #data
В рубрике интересных наборов данных инициатива Microsoft Data for Society [1] по публикации открытых данных необходимых для решения наиболее значимых проблем общества.

Данных там много, какие-то создаются компанией и раскрываются на Github, например, Solar farms mapping in India [2], другие создаются в партнерских лабораториях, например, HKH glacier mapping [3], но все вместе их можно рассматривать одновременно и как научную инициативу по открытому доступу и как модель корпоративной социальной ответственности.

Там же много ссылок на другие их инициативы в области развития общества через данные и ИИ. Сейчас это крупнейшая подобная корпоративная инициатива в мире, по масштабам она превосходит раскрытие данных многими городами и странами.

Ссылки:
[1] https://www.microsoft.com/en-us/ai/data-for-society
[2] https://github.com/microsoft/solar-farms-mapping
[3] https://lila.science/datasets/hkh-glacier-mapping

#opendata #ai #datasets #microsoft #corporateresponsibility
Из важного, Microsoft серьёзно пересматривают подход к этике ИИ, о чём пишут у себя в блоге [1], а также анонсируют вторую версию стандарта ответственного ИИ [2].

В контексте этого стандарта они закрыли для доступа их API распознавания лиц и эмоций [3] и это, также, весьма важный шаг саморегулирования ответственности корпораций.

И здесь я не могу не кинуть камень в огород российского кодекса этики ИИ [4] и важной разнице между ним и то в каком направлении сейчас движутся международные корпорации вроде Microsoft.

В российском кодексе этики ИИ явно декларируется требование соответствия законам, тем самым ставя компании которые имеют компетенции в этой области заведомо ниже законодателей у которых гарантированно компетенций в разы, если не на порядок меньше.

В стандарте Microsoft и иных подобных документах декларируется позиция корпорации которая и предполагается как будущая основа для законов.

Поэтому стандарт Microsoft будет иметь влияние на нашу с Вами жизнь, а российский кодекс этики ИИ не будет.

Ссылки:
[1] https://blogs.microsoft.com/on-the-issues/2022/06/21/microsofts-framework-for-building-ai-systems-responsibly/
[2] https://blogs.microsoft.com/wp-content/uploads/prod/sites/5/2022/06/Microsoft-Responsible-AI-Standard-v2-General-Requirements-3.pdf
[3] https://www.theverge.com/2022/6/21/23177016/microsoft-retires-emotion-recognition-azure-ai-tool-api
[4] https://bit.ly/3nfk7Lz

#ai #dataethics #aiethics #microsoft
Статья How China uses search engines to spread propaganda [1] и отчет Brookings Institution [2] о том как китайские власти манипулируют поисковой выдачей по теме Синцзяня и COVID-19.

Россию там тоже упоминают в контексте того что Google демонетизировал российские гос-СМИ.

Но важнее что авторы пишут о том что поисковые системы уже начали размечать контент от госСМИ Китая и не только и то что исследователи рекомендуют поисковым системам (технологическим кампаниями их создающим) поменять правила ранжирования и деприоритизировать "низкокачественный государственный контент".

Поэтому неприятная новость в том что "демократическая цензура" поисковых систем весьма вероятна и обсуждается․ Сейчас в контексте Китая, далее может и в контексте России.

Политический нейтралитет для big tech скоро станет уже абсолютно невозможен.

Ссылки:
[1] https://www.brookings.edu/techstream/how-china-uses-search-engines-to-spread-propaganda/
[2] https://www.brookings.edu/research/winning-the-web-how-beijing-exploits-search-results-to-shape-views-of-xinjiang-and-covid-19/

#search #censorship #china #russia #usa #microsoft #google
Microsoft, AWS, Meta и TomTom объединились и создали Overture Maps Foundation [1], фонд по созданию открытых картографических продуктов на основе открытых наборов данных, данных OpenStreetMap и других ресурсов. Почти наверняка к фонду присоединятся и другие игроки и, на сегодняшний день, это самый серьёзный вызов де-факто монополии Google в картографических сервисах. В какой-то другой исторический период я бы сказал что к этому фонду могли бы присоединиться и российские компании, но это маловероятно.

Что также важно։
- фонд создаётся при The Linux Foundation
- первые продукты могут появиться уже в первом квартале 2023 года.
- работа фонда предполагает создание новых стандартов схем данных и глобальной идентификации [2]
- картографические данные будут доступны вот свободными лицензиями [3]

Я бы предположил что следующие усилия фонда будут ещё и в направлениях։
- работы с органами власти по публикации открытых данных в определяемых фондом форматах
- грантовой поддержки проектов на открытых данных в области геоданных по созданию данных и инструментов
- создания инструментов совместной работы над геоданными։ разметки и тд.

В любом случае - это очень интересная инициатива которая добавит аргументов почему органам власти надо публиковать геоданные по определенным стандартам.

Ссылки։
[1] https://techcrunch.com/2022/12/15/meta-microsoft-aws-and-tomtom-launch-the-overture-maps-foundation-to-develop-interoperable-open-map-data/
[2] https://overturemaps.org/working-groups/
[3] https://www.linuxfoundation.org/press/linux-foundation-announces-overture-maps-foundation-to-build-interoperable-open-map-data

#opendata #data #cartography #microsoft #amazon #meta #tomtom
Из свежих интересных инструментов для работы с API Cadl [1] язык от Microsoft для описания облачных API и автогенерации кода для сервера и клиента. Существует в виде компилятора командной строки, расширений для VS Code и Visual Studio, написан полностью на nodejs, поддерживает спецификации OpenAPI, но ими не ограничивается.

Областей применения немало, в части работы с данными годится, например, для автогенерации API под разные источники данных.


Ссылки։
[1] https://microsoft.github.io/cadl/

#opensource #microsoft
47.8 миллионов километров дорог распознано в картах Bing и выложено Microsoft онлайн в виде открытых данных под лицензией ODbl [1]. В данных совсем нет Китая, Японии, Кореи, Папуа Новая-Гвинея.

Но Россия есть, и обитаемая зона её не так велика как географическая.

Все данные в формате TSV, сжатый объём около 10GB.

Ссылки։
[1] https://github.com/microsoft/RoadDetections

#opendata #datasets #microsoft
Microsoft презентовали обновлённую поисковую систему Bing с встроенным чат-ботом на базе OpenAI [1] и множеством других связанных новаций, в том числе встраиванием ИИ в ранжирование в поисковой системе.

Изменит ли это нашу реальность больше чем ChatGPT ? Похоже нет, ChatGPT уже достаточно всех вдохновил и напугал.

А вот Microsoft может получить существенную долю поискового рынка для Bing.

Ссылки:
[1] https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/

#ai #microsoft #search
В рубрике интересных наборов данных Global ML Building Footprints [1] набор данных георасположения зданий по всему миру созданный компанией Microsoft в рамках Bing Maps на основе спутниковой и аэрофотосъёмки Maxar, Airbus и IGN France. В репозитории краткая документация и скрипты загрузки, а также ссылка на список всех файлов этого набора данных представленный в виде CSV [2]. В том числе этот набор данных даёт геоданные по странам где публичных геоданных немного: Россия, Казахстан, Кыргызстан, Армения, Туркменистан, Афганистан и многое другое. На мой взгляд датасет сильно недооценённый и очень интересный.

Первая его версия вышла в июле 2022 года и с тех пор неоднократно данные обновлялись, последний раз в марте 2023 года данными по Японии и по Северной Америке.

Сейчас в нём более 1.03 миллиарда зданий. Кроме того набор данных доступен под свободной лицензией ODbL, изначально создавался для интеграции в OpenStreetMap и кроме него существует ещё несколько наборов меньшего объёма с данными по зданиям в США, Австралии, Канаде, Уганде и Танзании, Южной Африке, Кении и Нигерии и Юго-восточной Азии, на них есть ссылки в этом репозитории.

Эти же данные есть в Microsoft Planetary Computer [3] доступные через платформу Azure и через API по стандарту STAC.

Как и во многих других случаях это из тех примеров когда можно найти интересные негосударственные данные о стране/странах за их пределами с потенциально большей достоверностью и свободой использования

Ссылки:
[1] https://github.com/microsoft/GlobalMLBuildingFootprints
[2] https://minedbuildings.blob.core.windows.net/global-buildings/dataset-links.csv
[3] https://planetarycomputer.microsoft.com/dataset/ms-buildings

#opendata #datasets #microsoft #geospatial
В The Verge очень подробное интервью Kevin Scott, CTO Microsoft о том что компания планирует поместить AI инструменты разработки практически во все свои инструменты [1]. В MS Office, в инструменты разработки, в терминал и всюду и всюду и всюду. Прям даже интересно, в ядро ОС они его тоже встроят или ещё рано?

Интервью интересное, не только разговорами про возвращение Sydney в Bing, но и стратегией компании в целом.

Я вот подозреваю что самое очевидное применение будет информационная безопасность и именно под этим соусом и соусом продуктивности ИИ появится в ядрах Windows, OSX, Linux и других.

Ссылки:
[1] https://www.theverge.com/23733388/microsoft-kevin-scott-open-ai-chat-gpt-bing-github-word-excel-outlook-copilots-sydney

#ai #readings #microsoft
В рубрике интересных наборов данных база [1] из 650 тысяч сегментов пользователей собранных исследователем Wolfie Christl из рекламной платформы Xandr (изначально созданно в AT&T, купленной Microsoft в 2021 году).
Записи включают: имя поставщика данных, ID поставщика, ID сегмента, название пользовательского сегмента.

Данные интересные и ещё интереснее публикация в The Markup по итогам анализа этих данных [2].

Выводы там неутешительные, очень многие сегменты используют самые что ни на есть персональные данные включая самые чувствительные, вроде медицинских данных.

Ссылки:
[1] https://github.com/the-markup/xandr-audience-segments
[2] https://themarkup.org/privacy/2023/06/08/from-heavy-purchasers-of-pregnancy-tests-to-the-depression-prone-we-found-650000-ways-advertisers-label-you

#opendata #privacy #admarket #microsoft
В рубрике больших наборов данных Open Buildings [1] от Google. Набор данных идентификации зданий в странах Глобального Юга: Африка, Латинская Америка и Юго-Восточная Азия. Набор данных относительно велик, 178GB. Работать с ним можно в облаке Google или скачать себе локально его целиком или отдельные сегменты разделённые по геометрии S2 [2]. Кроме того каждому зданию присваиваются Plus codes [3], уникальные идентификаторы используемые в Google Maps.

Это уже третья версия этого набора данных, в ней появилась Латинская Америка и Карибы.

А я напомню что похожий набор данных публикуется Microsoft и охватывает меньше стран, зато есть и развитые страны США, Австралия, Канада в виде отдельных наборов данных и весь мир в качестве единого набора данных [4].

Было бы интересно увидеть сравнения этих наборов данных.

Ссылки:
[1] https://sites.research.google/open-buildings/
[2] https://s2geometry.io/
[3] https://maps.google.com/pluscodes/
[4] https://github.com/microsoft/GlobalMLBuildingFootprints

#opendata #google #microsoft #earth #datasets #data
Python внутри MS Excel [1] - это признание востребованности языка для дата-анализа и тем что Python уже стал стандартом де-факто для всех кто данные обрабатывает. Но то что только в облаке Microsoft Cloud сильно ограничивает корпоративное его применение для всех кто в облаке работать не готов.

Для тех кто использовал/использует MS Excel для очистки и обогащения данных не могу не напомнить про OpenRefine [2], продукт в котором Python (Jython) был встроен с самого начала. Когда надо полуавтоматически/полувручную проверять табличные данные - это незаменимый инструмент.

Ссылки:
[1] https://techcommunity.microsoft.com/t5/microsoft-365-blog/introducing-python-in-excel-the-best-of-both-worlds-for-data/ba-p/3905482
[2] https://openrefine.org

#microsoft #excel #datatools
Команда исследователей из Microsoft и Github'а разместили препринт статьи Open Data on GitHub: Unlocking the Potential of AI [1], о том что на Github'е хостится порядка 800 миллионов файлов открытых данных общим объёмом около 142 терабайт.

Статья интересная самим фактом рассмотрения Github'а в роли портала открытых данных, но с большими методическими ошибками из-за которых цифрам верить нельзя. Я также анализировал Github как источник наборов данных и главное что понял что как хостинг файлов он хорош, а в остальном, не особо.

Конкретно в этом случае у исследователей есть три фундаментальные ошибки:
1. Недостаточная фильтрация файлов с расширениями вроде .json которые не про данные, а разного рода конфиги из-за чего завышенное число файлов
2. Отсутствие учёта файлов в формате XML, что особенно поразительно, из-за чего, наоборот, занижение числа файлов
3. Отсутствие учёта файлов архивов XZ, GZip, BZ2 и ZIP, которые могут использоваться для хранения всякого, но можно было хотя бы учесть файлы с двойными расширениями .csv.xz, .xml.gz и так далее. Из-за этого очень сильное занижение объёмов хранимых данных.

В любом случае статья полезна для всех кто ищет данные, думает о том как их искать, и, в целом, думает про данные.

Ссылки:
[1] https://arxiv.org/abs/2306.06191

#opendata #research #microsoft #github #readings
Я ничего не писал про увольнение Сэма Альтмана из OpenAI ожидая когда станут известны подробности и подробности уже прозвучали, он переходит в Microsoft, что, для Microsoft, несомненно большой выигрыш. Тем временем просто интереса ради почитать обзор того как менялся состав правления OpenAI за 6 лет [2], там немало любопытного и непрозрачного было.

Почему это важно?
OpenAI сейчас лидер рынка генеративного ИИ и изменения в связи с уходом Альтмана могут отразится на рынке в целом. Например, то что Microsoft сейчас наберёт компетенций и откажется от финансовой поддержки OpenAI.

Ссылки:
[1] https://twitter.com/satyanadella/status/1726509045803336122
[2] https://loeber.substack.com/p/a-timeline-of-the-openai-board

#ai #microsoft
Грустная новость, Microsoft закрывают Planetary Data Hub [1], это был специальный сервис в рамках проекта Planetary Computer который позволял работать с большими наборами геоданных с помощью научных тетрадок которые были прямо на инфраструктуре этого сервиса. По опыту и отзывам пользовавшихся - очень удобный.

Что ещё немаловажно, так это то что хаб закрывают под предлогом несоответствия его новым политикам безопасности онлайн сервисов принятым в Microsoft недавно [2].

Есть, правда, подозрение что шаг этот, на самом деле, про монетизацию данных поскольку у коммерческих пользователей Azure есть возможность доступа через платные сервисы облака.

Теперь Hub закрывается, если Вы им пользовались то поспешите перенести тетради и данные [3] если Вы их там заводили.

Ссылки:
[1] https://github.com/microsoft/PlanetaryComputer/discussions/347
[2] https://blogs.microsoft.com/blog/2024/05/03/prioritizing-security-above-all-else/
[3] https://planetarycomputer-hub.microsoft.com/

#opendata #datasets #data #geodata #microsoft
К вопросу о каталогах данных, которые я изучаю вот уже много лет, в особенности каталоги общедоступных и открытых данных, чем больше я наблюдаю рынок, экосистему и тд. в том числе относительно больших каталогов данных, тем больше убеждаюсь что весь этот рынок за очень короткое время может перемешать Microsoft или, с меньшей вероятностью, Gitlab, реализовав в Github/Gitlab такое понятие как репозиторий данных.

По сути и так огромное число датасетов публикуют через Git, особенно научные репозитории выкладывают на Github, а на размещённое там уже дают ссылки с какого нибудь Zenodo.

Причём сделать дата репозитории Microsoft может сделать очень дешёвым образом.
1. Добавить атрибут data к репозиториям с данными, чтобы их можно было бы выделить в поиске.
2. Добавить спецификацию в YAML с метаданными датасета/датасетов в этом репозитории. За основу можно взять DCAT.

К счастью или к сожалению, ничего такого они не делают и, как следствие, своего поиска по данным у Microsoft нет. Но если бы сделали то Github было бы проще индексировать с помощью Dateno.

#opendata #datasets #microsoft #github #thoughts