В рубрике доступных, но недокументированных открытых данных которые. по хорошему, российское Минэкономразвития должно было бы публиковать на портале открытых данных если бы он был, геоданные инвестиционной карты РФ [1] хотя никак не обозначены и не документированы публично тем не менее доступны через интерфейсы API опенсорс продукта GeoServer который используется внутри этого портала. Разработчики закрыли интерфейс самого геосервера, но закрыть интерфейсы API невозможно без глубокой переделки сайта, поскольку именно с сайта слои автоматически подгружаются. Поэтому и рассказать об этом можно без опасений, API исчезнут только если исчезнет сам портал.
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.1.1&request=GetCapabilities - WMS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.3.0&request=GetCapabilities - WMS 1.3.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities - WFS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.1.0&request=GetCapabilities - WFS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=2.0.0&request=GetCapabilities - WFS 2.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.0.0&request=GetCapabilities - WCS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.0&request=GetCapabilities - WCS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.1&request=GetCapabilities - WCS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1&request=GetCapabilities - WCS 1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities - WCS 2.0.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities - WPS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/tms/1.0.0 - TMS. 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wms?request=GetCapabilities&version=1.1.1&tiled=true - WMTS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wmts?REQUEST=GetCapabilities - WMTS 1.0.0
Этот пример не единственный, в России общедоступных инсталляций GeoServer 12 штук, на сегодняшний день. Это немного, но они есть.
Ссылки:
[1] https://invest.gov.ru
#opendata #russia #datasets #geodata #spatial
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.1.1&request=GetCapabilities - WMS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WMS&version=1.3.0&request=GetCapabilities - WMS 1.3.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities - WFS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=1.1.0&request=GetCapabilities - WFS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WFS&version=2.0.0&request=GetCapabilities - WFS 2.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.0.0&request=GetCapabilities - WCS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.0&request=GetCapabilities - WCS 1.1.0
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1.1&request=GetCapabilities - WCS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=1.1&request=GetCapabilities - WCS 1.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WCS&version=2.0.1&request=GetCapabilities - WCS 2.0.1
- https://investmapapi.economy.gov.ru/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities - WPS 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/tms/1.0.0 - TMS. 1.0.0
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wms?request=GetCapabilities&version=1.1.1&tiled=true - WMTS 1.1.1
- https://investmapapi.economy.gov.ru/geoserver/gwc/service/wmts?REQUEST=GetCapabilities - WMTS 1.0.0
Этот пример не единственный, в России общедоступных инсталляций GeoServer 12 штук, на сегодняшний день. Это немного, но они есть.
Ссылки:
[1] https://invest.gov.ru
#opendata #russia #datasets #geodata #spatial
Я, кстати, в очередной раз могу сказать что открытые данные - это, в первую очередь, культура и систематизация работы с данными. Так сложилось что я регулярно работаю с большими базами документов порождённых органами власти. Не с отдельными файлами, а прям с копиями банков документов законов и других НПА. И огромная часть этих НПА - это, безусловно, то что должно быть доступно в виде данных, а не в виде отсканированных PDF документов.
Если бы официальные документы все и всеми публиковались бы с приложениями, хотя бы в виде Excel файлов, то доступных данных было бы гораздо больше.
Например из десятков тысяч документов опубликованных органами власти г. Москвы на оф сайте mos.ru, как минимум несколько тысяч - это очень большие таблицы, в сотни и тысячи страниц опубликованные как сканы. Если бы их публиковали иначе, то то же Правительство Москвы могло бы публиковать не несколько сотен, а несколько тысяч наборов данных, потенциально весьма востребованных к тому же.
Это просто пример, он справедлив к отношении практически всех органов власти, особенно крупных стран и территорий.
А я об этом задумался ещё давно в контексте того что поиск по данным может начинаться как поиск по каталогам данных и индексированием того что уже машиночитаемо, а продолжаться охватывая то что ещё не машиночитаемо, но может стать таковым. Чтобы проиндексировать каталог данных, надо сделать этот каталог данных (с).
#opendata #datasets #laws #datacatalogs
Если бы официальные документы все и всеми публиковались бы с приложениями, хотя бы в виде Excel файлов, то доступных данных было бы гораздо больше.
Например из десятков тысяч документов опубликованных органами власти г. Москвы на оф сайте mos.ru, как минимум несколько тысяч - это очень большие таблицы, в сотни и тысячи страниц опубликованные как сканы. Если бы их публиковали иначе, то то же Правительство Москвы могло бы публиковать не несколько сотен, а несколько тысяч наборов данных, потенциально весьма востребованных к тому же.
Это просто пример, он справедлив к отношении практически всех органов власти, особенно крупных стран и территорий.
А я об этом задумался ещё давно в контексте того что поиск по данным может начинаться как поиск по каталогам данных и индексированием того что уже машиночитаемо, а продолжаться охватывая то что ещё не машиночитаемо, но может стать таковым. Чтобы проиндексировать каталог данных, надо сделать этот каталог данных (с).
#opendata #datasets #laws #datacatalogs
В рубрике больших интересных наборов данных Global Biodiversity Data [1] набор открытых данных по биоразнообразию собранный из нескольких научных работ и опубликованный в каталоге данных Всемирного банка.
Датасет относительно небольшой, около 2.2 ГБ в сжатом виде и содержит георазмеченные сведения по встречаемости различных видов.
О нём в августе писали в блоге Всемирного банка [2] и датасет полезен всем кто хочет изучить животный и растительный мир своей страны. Буквально годится для работы школьников на хакатонах например, но язык только английский.
Ссылки:
[1] https://datacatalog.worldbank.org/search/dataset/0066034/global_biodiversity_data
[2] https://blogs.worldbank.org/en/opendata/a-new-world-bank-database-to-support-a-new-era-in-biodiversity-c
#opendata #datasets #worldbank #biodiversity
Датасет относительно небольшой, около 2.2 ГБ в сжатом виде и содержит георазмеченные сведения по встречаемости различных видов.
О нём в августе писали в блоге Всемирного банка [2] и датасет полезен всем кто хочет изучить животный и растительный мир своей страны. Буквально годится для работы школьников на хакатонах например, но язык только английский.
Ссылки:
[1] https://datacatalog.worldbank.org/search/dataset/0066034/global_biodiversity_data
[2] https://blogs.worldbank.org/en/opendata/a-new-world-bank-database-to-support-a-new-era-in-biodiversity-c
#opendata #datasets #worldbank #biodiversity
В рубрике как это устроено у них Indian Data Portal [1] портал открытых данных созданный Bharti Institute of Public Policy, индийским исследовательским центром в области публичной политики.
Интересен тем что работает на собственном движке поверх каталога открытых данных CKAN. Сами данные хранятся в связанном с ним каталогом данных [2], а основной веб сайт использует API каталога данных для создания дополнительных фильтров при поиске данных, таких как гранулярность, сектор экономики, источник данных, частота обновления.
Данные исследователям доступны после авторизации и, в принципе, именно они являются аудиторией этого портала.
Это пример, использования CKAN как Data Management System (DMS), многие порталы данных в мире создавались по той же модели, когда CKAN используется как хранилище метаданных и данных, а над ним строятся разные интерфейсы.
Ссылки:
[1] https://indiadataportal.com/
[2] https://ckan.indiadataportal.com/
#opendata #datacatalogs #datasets #india
Интересен тем что работает на собственном движке поверх каталога открытых данных CKAN. Сами данные хранятся в связанном с ним каталогом данных [2], а основной веб сайт использует API каталога данных для создания дополнительных фильтров при поиске данных, таких как гранулярность, сектор экономики, источник данных, частота обновления.
Данные исследователям доступны после авторизации и, в принципе, именно они являются аудиторией этого портала.
Это пример, использования CKAN как Data Management System (DMS), многие порталы данных в мире создавались по той же модели, когда CKAN используется как хранилище метаданных и данных, а над ним строятся разные интерфейсы.
Ссылки:
[1] https://indiadataportal.com/
[2] https://ckan.indiadataportal.com/
#opendata #datacatalogs #datasets #india
В рубрике интересных наборов и каталогов данных, источники данных по блокчейну, Web 3
- Blockсhair datasets [1] дампы всех основных криптовалют: Bitcoin, Bitcoin Cash, Zcash, ERC-20, Ethereum, Dogecoin, Litecoin в виде коллекции сжатых TSV файлов
- Bitcoin Blockchain Historical Data [2] датасет на Kaggle адаптированный под data science прямо на платформе, только Bitcoin
- AWS Public Blockchain Data [3] дампы блокчейнов Bitcoin и Ethereum сразу в формате parquet
- Google Cloud Blockchain Analytics [4] данные и интерфейс работы с ними для 24 разных криптовалют на платформе Google Cloud
Ссылки:
[1] https://blockchair.com/dumps
[2] https://www.kaggle.com/datasets/bigquery/bitcoin-blockchain
[3] https://registry.opendata.aws/aws-public-blockchain/
[4] https://cloud.google.com/blockchain-analytics/docs/supported-datasets
#opendata #datasets #data #datacatalogs
- Blockсhair datasets [1] дампы всех основных криптовалют: Bitcoin, Bitcoin Cash, Zcash, ERC-20, Ethereum, Dogecoin, Litecoin в виде коллекции сжатых TSV файлов
- Bitcoin Blockchain Historical Data [2] датасет на Kaggle адаптированный под data science прямо на платформе, только Bitcoin
- AWS Public Blockchain Data [3] дампы блокчейнов Bitcoin и Ethereum сразу в формате parquet
- Google Cloud Blockchain Analytics [4] данные и интерфейс работы с ними для 24 разных криптовалют на платформе Google Cloud
Ссылки:
[1] https://blockchair.com/dumps
[2] https://www.kaggle.com/datasets/bigquery/bitcoin-blockchain
[3] https://registry.opendata.aws/aws-public-blockchain/
[4] https://cloud.google.com/blockchain-analytics/docs/supported-datasets
#opendata #datasets #data #datacatalogs
Blockchair
Ultimate Cryptocurrency Dataset by Blockchair
Comprehensive dataset across top cryptocurrencies
Давно пишу по кусочкам лонгрид про природу данных и наборов данных, про то как отличается их восприятие людьми разных профессий и потребностей и как от того где они применяются "плавает" это определение.
Самый простой пример - это всегда ли данные машиночитаемы? К примеру, данные в виде файлов csv, json, xml и тд. всегда можно рассматривать как машиночитаемые, а, к примеру, тексты, видео и изображения нет. Но если собрать тысячи, сотни тысяч текстов или фотографий, то вот, пожалуйста, датасет для обучения в data science. То есть данные не всегда машиночитаемы?
Другой пример, конфигурационные файлы приложений распространённо имеют машиночитаемые форматы как раз те же самые json, xml, yaml и ряд других. Делает ли это их наборами данных? Вообще-то нет, потому что не прослеживается модели их повторного использования.
Может быть именно повторное использование и востребованность тогда является главным критерием определения набора данных? В классических определениях набора данных это, или набор таблиц, или единица измерения информации опубликованной в открытом доступе.
А как рассматривать API? К примеру, в геоданных массово данные доступны не в виде файлов, а в виде API по стандартам OGC или ряду проприетарных. Их принято относить к наборам данных. Но там разные API, к примеру, WFS, WMS без сомнений можно относить к data api (API для доступа к данным), а какие-нибудь WPS уже точно не data api, а процессные API для обработки данных, а WCS что ближе к не API для данных, с помогающих в работе с геоинструментами. Для аудитории специалистов по геоанализу они нужны, но как бы не данные.
В научной среде репозитории данных очень часто совмещены с репозиториями ПО, во всяком случае для репозиториев общего типа. Главная идея тут в том что без ПО, причём конкретной версии, сложно повторить эксперимент/процессы в результате которых были данные получены.
Ещё пример, опять же про не машиночитаемость. С точки зрения архивации данных важно хранить данные в любой форме за условно любой период времени. К примеру, статистический сборник 19го века. Формально не машиночитаем, по факту исследователям статистикам может быть нужен? Безусловно. На многих порталах открытых данных опубликованы тысячи таких сборников как открытые данные. Но они не машиночитаемые. В такой логике к, примеру, Библиотека конгресса США или Национальная электронная библиотека в РФ это тоже каталоги данных? Или источники данных? Даже если они не машиночитаемы?
Всё это возвращает к размышлениям о том что наборы данных - это то о чём можно говорить как об опубликованным со смыслом (publish with the purpose), с пониманием аудитории и хотя бы одного сценария их применения.
В практическом применении это напрямую затрагивает, например, то какие данные индексируют и не индексируют поисковые системы. К примеру, Google Dataset Search не индексирует геоданные, они медленно, то уверенно склоняются к поисковику для исследователей. Научные поисковики вроде OpenAIRE, DataCite или BASE с самого начала декларируют что это не только поиск по данным, а по любым результатам научной деятельности до которых просто дотянутся. Для data science поисковика нет поскольку всего два основных ресурса, Hugging Face и Kaggle.
В Dateno индексируются геоданные (гео API) и порталы индикаторов причём с расширенной трактовкой индикаторов как то что датасетом является индикатор + страна во всех случаях когда можно сделать постоянную ссылку на файл или API. Так делают многие создатели этих порталов с индикаторами уже давно. Но это тоже некая форма интерпретации исходя из потребности и поиска пользователей.
Всё это, отчасти, философский вопрос о том строить ли поисковую систему по данным или поисковую систему для тех кто работает с данными. Разница между двумя этими понятиями весьма существенна. И поэтому она начинается с собственного определения того что такое набор данных
#thoughts #data #datasets
Самый простой пример - это всегда ли данные машиночитаемы? К примеру, данные в виде файлов csv, json, xml и тд. всегда можно рассматривать как машиночитаемые, а, к примеру, тексты, видео и изображения нет. Но если собрать тысячи, сотни тысяч текстов или фотографий, то вот, пожалуйста, датасет для обучения в data science. То есть данные не всегда машиночитаемы?
Другой пример, конфигурационные файлы приложений распространённо имеют машиночитаемые форматы как раз те же самые json, xml, yaml и ряд других. Делает ли это их наборами данных? Вообще-то нет, потому что не прослеживается модели их повторного использования.
Может быть именно повторное использование и востребованность тогда является главным критерием определения набора данных? В классических определениях набора данных это, или набор таблиц, или единица измерения информации опубликованной в открытом доступе.
А как рассматривать API? К примеру, в геоданных массово данные доступны не в виде файлов, а в виде API по стандартам OGC или ряду проприетарных. Их принято относить к наборам данных. Но там разные API, к примеру, WFS, WMS без сомнений можно относить к data api (API для доступа к данным), а какие-нибудь WPS уже точно не data api, а процессные API для обработки данных, а WCS что ближе к не API для данных, с помогающих в работе с геоинструментами. Для аудитории специалистов по геоанализу они нужны, но как бы не данные.
В научной среде репозитории данных очень часто совмещены с репозиториями ПО, во всяком случае для репозиториев общего типа. Главная идея тут в том что без ПО, причём конкретной версии, сложно повторить эксперимент/процессы в результате которых были данные получены.
Ещё пример, опять же про не машиночитаемость. С точки зрения архивации данных важно хранить данные в любой форме за условно любой период времени. К примеру, статистический сборник 19го века. Формально не машиночитаем, по факту исследователям статистикам может быть нужен? Безусловно. На многих порталах открытых данных опубликованы тысячи таких сборников как открытые данные. Но они не машиночитаемые. В такой логике к, примеру, Библиотека конгресса США или Национальная электронная библиотека в РФ это тоже каталоги данных? Или источники данных? Даже если они не машиночитаемы?
Всё это возвращает к размышлениям о том что наборы данных - это то о чём можно говорить как об опубликованным со смыслом (publish with the purpose), с пониманием аудитории и хотя бы одного сценария их применения.
В практическом применении это напрямую затрагивает, например, то какие данные индексируют и не индексируют поисковые системы. К примеру, Google Dataset Search не индексирует геоданные, они медленно, то уверенно склоняются к поисковику для исследователей. Научные поисковики вроде OpenAIRE, DataCite или BASE с самого начала декларируют что это не только поиск по данным, а по любым результатам научной деятельности до которых просто дотянутся. Для data science поисковика нет поскольку всего два основных ресурса, Hugging Face и Kaggle.
В Dateno индексируются геоданные (гео API) и порталы индикаторов причём с расширенной трактовкой индикаторов как то что датасетом является индикатор + страна во всех случаях когда можно сделать постоянную ссылку на файл или API. Так делают многие создатели этих порталов с индикаторами уже давно. Но это тоже некая форма интерпретации исходя из потребности и поиска пользователей.
Всё это, отчасти, философский вопрос о том строить ли поисковую систему по данным или поисковую систему для тех кто работает с данными. Разница между двумя этими понятиями весьма существенна. И поэтому она начинается с собственного определения того что такое набор данных
#thoughts #data #datasets
Еврокомиссия 24 сентября запустила Public Procurement Data Space (PPDS) [1] инициативу по интеграции данных о государственных закупках в странах Евросоюза. Инициатива эта является продолжением и развитием Европейской стратегии данных (European strategy for data) [2] от 2020 года где тематика доступности данных о закупках была явно обозначена.
Из любопытного:
1. В основе технологий PPDS лежит онтология eProcurement Ontology (ePO) [3] и технологии Knowledge Graphs с реализацией аналитической базы данных с интерфейсом SPARQL
2. У проекта есть открытые репозитории, в основном с проверка
ми качества данных и индикаторами [4]
3. А также они в открытый доступ отдают дашборды с оценками качества данных [5], реализованы дашборды на Superset
Собственно чего в PPDS пока нехватает - это самих данных, систематизированных и пригодных для автоматической загрузки и обработки.
Ссылки:
[1] https://www.public-procurement-data-space.europa.eu/en
[2] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
[3] https://docs.ted.europa.eu/EPO/latest/index.html
[4] https://eproc.pages.code.europa.eu/ppds/pages/
[5] https://www.public-procurement-data-space.europa.eu/en/dashboards
#opendata #europe #procurement #data #datasets
Из любопытного:
1. В основе технологий PPDS лежит онтология eProcurement Ontology (ePO) [3] и технологии Knowledge Graphs с реализацией аналитической базы данных с интерфейсом SPARQL
2. У проекта есть открытые репозитории, в основном с проверка
ми качества данных и индикаторами [4]
3. А также они в открытый доступ отдают дашборды с оценками качества данных [5], реализованы дашборды на Superset
Собственно чего в PPDS пока нехватает - это самих данных, систематизированных и пригодных для автоматической загрузки и обработки.
Ссылки:
[1] https://www.public-procurement-data-space.europa.eu/en
[2] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
[3] https://docs.ted.europa.eu/EPO/latest/index.html
[4] https://eproc.pages.code.europa.eu/ppds/pages/
[5] https://www.public-procurement-data-space.europa.eu/en/dashboards
#opendata #europe #procurement #data #datasets
В рубрике интересных больших наборов данных
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
Я в ближайшие дни больше расскажу про большое обновление в Dateno.io которое мы недавно произвели, а там, в первую очередь, большое обновление индекса на 4 миллиона датасетов и личный кабинет с API [1].
А пока немного о том что есть в Dateno и нет в большинстве поисковиков по данным. Это то что Dateno теперь крупнейший поисковик по статистическим индикаторам по всему миру. Сейчас в базе данных более чем 6.7 миллионов индикаторов, в привязке к источникам данных, странам, темам и многому другому.
Основные источники статистики - это статистические порталы ряда стран и глобальные каталоги индикаторов от Всемирного Банка, Банка международных расчётов и ряда структур ООН.
Этих источников, на самом деле, значительно больше и до конца года мы их добавим. Есть ещё пара десятков глобальных и около сотни национальных порталов со статистикой.
Но, далеко не со всеми из них работать просто, и вот почему:
1. Далеко не все порталы статистики создаются на типовом ПО, основное типовое ПО для статистики это PxWeb и .Stat Suite. Сайты на базе PxWeb уже индексируется в Dateno, а на .Stat Suite будут в скором будущем. Но таковых не так много
2. Даже если порталы сделаны на одном из типовых ПО, не всегда они пригодны используют актуальные версии ПО. Например, статбанк Армении [2] работает на ПО PxWeb старой версии и чтобы его проиндексировать надо писать специальный парсер, потому что стандартное API не работает.
3. Далеко не все, даже лучшие международные примеры порталов статистики, предоставляют её в стандартизированных форматах и с возможностью дать ссылку на конкретный индикатор. Есть прекрасные примеры, вроде портала Банка международных расчётов [3], но и плохих примеров много, вроде портала статистики ООН [4]
Тем не менее и текущие 6.7 миллионов индикаторов - это много. Это возможность поиска страновой статистики удобным образом. К примеру, для поиска статистики по тем странам где нет порталов открытых данных или удобных сайтов статслужб.
В это обновление не попали данные Евростата и ЕЦБ, ещё нескольких структур ООН и не только, но они попадут в следующие и тогда число индикаторов достигнет 10-12 миллионов, а может быть и больше;)
А пока, если Вы ищете статистику, то Dateno - это хорошее место чтобы начать её искать.
Далее, я расскажу про то как работать с API Dateno в примерах и поиске датасетов по нестандартным темам, таким как криптовалюта, извлечение данных из документов и превращение банков документов в порталы данных и не только.
Ссылки:
[1] https://api.dateno.io
[2] https://statbank.armstat.am
[3] https://data.bis.org
[4] https://data.un.org
#opendata #dateno #statistics #datasets
А пока немного о том что есть в Dateno и нет в большинстве поисковиков по данным. Это то что Dateno теперь крупнейший поисковик по статистическим индикаторам по всему миру. Сейчас в базе данных более чем 6.7 миллионов индикаторов, в привязке к источникам данных, странам, темам и многому другому.
Основные источники статистики - это статистические порталы ряда стран и глобальные каталоги индикаторов от Всемирного Банка, Банка международных расчётов и ряда структур ООН.
Этих источников, на самом деле, значительно больше и до конца года мы их добавим. Есть ещё пара десятков глобальных и около сотни национальных порталов со статистикой.
Но, далеко не со всеми из них работать просто, и вот почему:
1. Далеко не все порталы статистики создаются на типовом ПО, основное типовое ПО для статистики это PxWeb и .Stat Suite. Сайты на базе PxWeb уже индексируется в Dateno, а на .Stat Suite будут в скором будущем. Но таковых не так много
2. Даже если порталы сделаны на одном из типовых ПО, не всегда они пригодны используют актуальные версии ПО. Например, статбанк Армении [2] работает на ПО PxWeb старой версии и чтобы его проиндексировать надо писать специальный парсер, потому что стандартное API не работает.
3. Далеко не все, даже лучшие международные примеры порталов статистики, предоставляют её в стандартизированных форматах и с возможностью дать ссылку на конкретный индикатор. Есть прекрасные примеры, вроде портала Банка международных расчётов [3], но и плохих примеров много, вроде портала статистики ООН [4]
Тем не менее и текущие 6.7 миллионов индикаторов - это много. Это возможность поиска страновой статистики удобным образом. К примеру, для поиска статистики по тем странам где нет порталов открытых данных или удобных сайтов статслужб.
В это обновление не попали данные Евростата и ЕЦБ, ещё нескольких структур ООН и не только, но они попадут в следующие и тогда число индикаторов достигнет 10-12 миллионов, а может быть и больше;)
А пока, если Вы ищете статистику, то Dateno - это хорошее место чтобы начать её искать.
Далее, я расскажу про то как работать с API Dateno в примерах и поиске датасетов по нестандартным темам, таким как криптовалюта, извлечение данных из документов и превращение банков документов в порталы данных и не только.
Ссылки:
[1] https://api.dateno.io
[2] https://statbank.armstat.am
[3] https://data.bis.org
[4] https://data.un.org
#opendata #dateno #statistics #datasets
Свежая AI модель предсказания погоды от NASA и IBM [1] причём модель обучена была на множестве GPU, а запустить её можно на настольном компьютере.
Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй
Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
#opendata #datasets #data #climate #ai
Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй
Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
#opendata #datasets #data #climate #ai