Ivan Begtin
7.98K subscribers
1.81K photos
3 videos
101 files
4.52K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
Полезное чтение про данные, технологии и не только:
- Google News Is Boosting Garbage AI-Generated Articles [1] статья о том что Google News бустят новости не с оригинальных сайтов, а с тех что рерайтят оригинал с помощью ИИ. Статья под пэйволом, но, в общем, всё сказано в заголовке. Непонятно только что с этим делать.
- Paper on Sleeping Agents [2] о том как помещать бэкдоры в языковые модели которые бы могли проходить проверки безопасности. Отдельное новое направление для команд занимающихся инфобезом.
- It's time to build [3] свежая заметка от Benn Stancil о том что для того чтобы создавать дата-стартапы (инструментальные стартапы) не надо новых идей, надо старые идеи/продукты сделать современными.
Не могу с этим не согласится и примеры он приводит релевантные.
- Python Packaging, One Year Later: A Look Back at 2023 in Python Packaging [4] о том как устроены пакеты в Python, технический и прикладной обзор за 2023 год. Может показаться сугубо технической темой, но она актуальна для всех кто создаёт или распространяет пакеты для Python. От себя добавлю что пакеты для Python уже давно стали одним из отражений качества любого продукта или сервиса. Уже не просто API предоставляется, а сразу пакет для Python для доступа к API.
- SQLMesh [5] - open-source движок для преобразования данных близкий и сравнимый с dbt по идеологии и авторы которого продвигают концепцию Virtual Data Environment (VDE) [6]. Концепт как минимум интересный. Кстати, эти же ребята авторы python библиотеки SQLGlot [7], парсера и оптимизатора SQL запросов
- Omni [8] свежий стартап по BI, упомянутый недавно Benn Stancil, делают то же что и все просто проще и симпатичнее. У меня в списке продуктов на потестить визуализацию разным образом. Главное удобство - это комбинация SQL запросов и визуализации данных.
- DataHem odyssey - the evolution of a data platform, part 2 [9] подробный рассказ о эволюции аналитической платформы в Mathem со множеством подробностей про использование dbt и не только.

Ссылки:
[1] https://www.404media.co/google-news-is-boosting-garbage-ai-generated-articles/
[2] https://arxiv.org/pdf/2401.05566.pdf
[3] https://benn.substack.com/p/its-time-to-build
[4] https://chriswarrick.com/blog/2024/01/15/python-packaging-one-year-later/
[5] https://sqlmesh.com
[6] https://tobikodata.com/virtual-data-environments.html
[7] https://github.com/tobymao/sqlglot
[8] https://omni.co
[9] https://robertsahlin.substack.com/p/datahem-odyssey-the-evolution-of-95f

#readings #data #datatools #opensource #dataengineering #ai
Свежая картинка по продуктам с открытым кодом в области дата инженерии.

Подробнее о ней в блоге её автора на Substack [1].

А я скажу что такие картинки хороши когда надо синхронизировать картинку в голове с изменениями за год, правда, мне лично, вот такой иконостас иконок всегда казался не наглядным и куда практичнее были обзоры по наиболее интересным развивающимся и новым продуктам.

Вот в этой картинке, например, нет SODA для data quality, в платформе метаданных зачем-то CKAN, хотя он про другое.

Я, кстати, несколько по другому систематизирую инструменты с открытым кодом. Когда-то просто стал делать закладки в Github по категориям [2] и там много их, больше 30 списков.

А заодно для тех кто интересуется разного рода экзотическим открытым кодом. Markdowndb [3] наглядная реализация принципов "всё таблица" и "всё SQL". Это фреймворк превращающий документы с разметкой Markdown в SQL базу данных к которой можно делать запросы к содержимому этих файлов с фильтрацией по тэгам, файлам и тд. Внутри используют Sqlite, в гайдах рассказывают как заменить статические файлы на эту базу в статических сайтах.

Ссылки:
[1] https://practicaldataengineering.substack.com/p/open-source-data-engineering-landscape
[2] https://github.com/ivbeg?tab=stars
[3] https://markdowndb.com

#opensource #data #dataengineering #datatools
Я давно не писал про некоторые базовые принципы работы с данными, хотя регулярно о них задумываюсь в практическом контексте применения концепций и принципов инженерии данных к открытым и общедоступным данным. Например, про data lineage, которое на русский язык коллеги переводят как генеалогию данных. Я буду использовать термин data lineage, как более употребимое.

Так вот интересное тут то что в корпоративном мире с густой аналитикой (когда аналитические команды есть и они сильные, и запрос на аналитику есть), так вот в корпоративном мире data lineage - это понятное явление, если не привычное, то активно обсуждаемое и применяемое. Потому что decision maker'ы часто задают вопросы о том как та или иная цифра вышла и надо иметь ответ о том, а как же это оно есть. А вот в мире общедоступных данных, статистики и, отчасти, науки, с data lineage всё, скажем там, плоховато или очень специфично.

В случае научных данных общего типа, происхождение данных, обычно, описано текстом, неструктурировано и, частично, выявляется из ссылок на данные которые использовались. Иногда по этим ссылкам можно определить быстро первоисточник и способы обработки, иногда сложнее. Для хорошо структурированных научных областей вроде биоинформатики это должно быть проще, для других наук сложнее и тд.

В других случаях это сложнее, иногда реально сложно. Ещё сложнее со статистикой, при том что там источники данных указываются практически всегда, но это указание может быть не на первоисточник, а на глобальный источник. Простой пример, какой-нибудь агрегатор данных статистики вроде портала данных ООН (data.un.org) может собирать данные из портала данных Международного валютного фонда (IMF) data.imf.org, а тот из первоисточника, страницы раскрытия данных на сайте резервного банка или статслужбы страны. А кто-то коммерческий может, опять же, собирать данные с портала ООН и выдавать в своём сервисе.
Будем ли он при этом рисовать полноценный data lineage от портала данных ООН до сайта статслужбы ? Вообще-то нет, источником будет указан портал ООН.

С открытыми данными данными ещё хуже, там даже приближения к генеалогии данных нет, даже если в первоисточнике базы из которой создан датасет он есть.

Потому что есть огромное немаловажное явление - это технологический разрыв между порталами раскрытия и системами управления данными.
Он особенно остро ощущается теми кто работает в обоих мирах, с корпоративными данными, и с общедоступными данными.

Лично я его ощущаю довольно сильно и проекты и инициативы которые создаются дата инженерами и, условно, идеологами и активистами отличаются очень сильно.

Первые продвинуты технологически и сразу ориентированы на разработчиков (API, структурированное хранилище, преобразование данных в удобные форматы JSON, Parquet и др.), но, часто, забывая про базовые принципы открытости.

Вторые, наоборот, ориентированы на государственную или корпоративную прозрачность, но технологическая реализация всегда оставляет ощущение архаики.

Как выглядят идеальные порталы/сайты индикаторов или порталы публикации геоданных? Лично я считаю что главное в них это максимальная ориентация на использование дата-инженерами и дата-аналитиками владеющими современными инструментами. Даже, если не суперсовременными, но хотя бы актуальными.

Это реализация data lineage, это проектирование по принципу API First, это современные форматы предоставления данных для data science, это _всегда_ наличие bulk download, это концепция в основе что data as a product, а не данные как производный продукт от чего то ещё.

#opendata #data #dataengineering #thoughts
Свежие и полезные инструменты с открытым кодом для загрузки и обработки данных:
- PyAirbyte [1] библиотека для Python от команды Airbyte для того чтобы перенести логику этого движка по сбору данных в Python. Поддерживает все коннекторы Airbyte ранее написанные на Python
- dlt [2] Data Load Tool, явно созвучное dbt, библиотека для Python для реализации принципа Extract-Load-Transform. Выглядит довольно целостно, стоит изучить внимательнее
- ingestr [3] утилита командной строки по переносу баз данных из одного источника в другой. Поддерживает основные SQL СУБД
- sling [4] инструмент для выгрузки/загрузки данных с большинства основных СУБД включая облачные, файловых систем и различных дата файлов. Реализован на Go, важное ограничение GPL 2 лицензия (для сравнения у dlt лицензия Apache 2, а у ingestr MIT).

И конечно остаются такие инструменты как Meltano, Dagster, CloudQuery и многие другие

Ссылки:
[1] https://airbyte.com/blog/announcing-pyairbyte
[2] https://dlthub.com
[3] https://github.com/bruin-data/ingestr
[4] https://github.com/slingdata-io/sling-cli

#opensource #dataengineering
Фразы которыми можно пугать дата инженеров на собеседованиях и не только:
- данные у нас в CSV и Excel на FTP сервере
- наши Excel файлы обновляются в реальном времени на сетевом диске
- требуется работать с большим числом серверов и таблиц из SAP/1С/Oracle Application (нужное тяжелое легаси подставить)
- данные в личных папках пользователей в Sharepoint, надо их синхронизировать
- мы хотим сделать наше озеро данных на Hadoop'е
- большая часть данных у нас в PDF, мы не знаем тексты там или сканы
- требуется 10-летний опыт с dbt cloud

А чем Вы пугаете, чем пугают Вас ?

#humor #dataengineering
Свежий доклад State of Data Engineering 2024 от команды LakeFS.

Подмечают три ключевых тренда:
1. Генеративный ИИ влияет на инструментарий в Modern Data Stack
2. Конкуренция дата продуктов растёт и, соответственно, моё дополнение, цена выхода на рынок с новым продуктом.
3. Открытые форматы создают закрытые заборы. В центре конфликт между Databricks и Snowflake.

Последнее утверждение спорное, скорее речь о том что есть такой конфликт на рынке, а уж каким образом и что используется при нем - не это в его основе.

Что характерно в таких обзорах State of ... так то что от 75 до 95 процентов инструментов, по разным категориям, это облачные продукты. К российским реалиям, к примеру, они не применимы. Как и ко многим особо закрытым не-российским стекам данных.

И, кстати, чтобы не забыть, составители таких State of продолжают путать открытые данные и каталоги открытых данных и корпоративные каталоги. А это очень разные продукты под очень разные задачи.

А если бы я выпускал свой State of data ... то делал бы два отдельных. Один для облака, а другой для корп оффлайна. А может быть даже и три. Ещё один для корп оффлайна открытого кода.

#datatools #opensource #stateof #dataengineering #moderndatastack #readings
Хорошая статья [1] о том как добиться высокой производительности Python при обработке очень больших файлов с данными на примере данных конкурса One Billion Row Challenge [2].

Ключевое что можно из статьи вынести:
- да, по умолчанию Python медленный, но есть много способов его очень сильно ускорить
- Polars и DuckDB дают сильнейшее ускорение, буквально 30кратное и делают обработку данных особенно быстрой
- Pandas - это медленно, пора отказываться от него где возможно
- замена CPython на PyPy заметно ускоряет процесс
- всё это без использования GPU, на ноутбуке

А я не могу не вспомнить что уже есть One Trillion Rows Challenge [3] где Dask претендуют на лучшую скорость обработки данных [4]

Больше соревнований хороших и разных!

Ссылки:
[1] https://towardsdatascience.com/python-one-billion-row-challenge-from-10-minutes-to-4-seconds-0718662b303e
[2] https://1brc.dev
[3] https://t.me/begtin/5529
[4] https://docs.coiled.io/blog/1trc.html

#data #dataengineering #contests #python
Разное, дата инженерное:
1. При работе с JSON lines (NDJSON) по прежнему MongoDB поглощает любой скормленный файл, DuckDB лучше умеет считывать схемы и Clickhouse включая Clickhouse-local оказался самым "капризным". Для ситуаций данных с большим числом NoSQL данных и множеством схем clickhouse применим ограниченно и надо делать специальный инструментарий/надстройку чтобы иvмпортировать уже по предраспознанным схемам, что сильно замедлит импорт на больших файлах. По прежнему очень не хватает высокопроизводительного инструмента для работы с NoSQL.
2. DuckDB примечателен в плане й удобства разработчика, доступных примеров и документации, расширяемости и тд. DuckDB - это очень крутой инструмент. Причём можно смотреть на него как на вещь в себе и подспорье для аналитика, а можно как один из компонентов создаваемого дата-продукта.
3. Ценность Parquet'а начинаешь понимать когда взаимодействуешь с командами публикующими плохо документированные CSV файлы с кучей ошибок из-за того что они в CSV файлы упихивают иерархические структуры из первоисточника. Такие файлы или очень неудобно или совсем нормально не импортируются стандартными средствами. Parquet должен быть форматом для данных по умолчанию, остальное производится из него быстро.
4. Clickhouse или DuckDB были бы хорошими инструментами для замены движка внутри OpenRefine. Но, похоже, этого не дождаться. Разве что, сделать всё же, инструмент для headless data refine, я такой когда-то смастерил для MongoDB, но скорость там оставляет желать лучшего. Скорее это был прототип для оценки возможности реализации.
5. Классические ETL/ELT инструменты для геоданных не то чтобы совсем непригодны, но не заточены ни разу. Создавать / адаптировать существующие ETL движки под них? Или использовать что-то целенаправленно созданное в этой области? Пока не очень впечатляет всё что я видел.

#notes #dataengineering #data #datatools
Собрал свои публичные презентации по нескольким темам и понял что получится большой пост если перечислять все. Вот тут самые основные:

Открытые данные
-
Раскрытие данных о госфинансах как часть государственной политики - про проекты открытости госфинансов и их значимости
- Открытые данные как основа госполитики - о том как устроены открытые данные в мире
- Как искать данные с помощью каталогов данных. Проект Datacatalogs.ru - об одном из первых каталогов-каталогов данных
- Sharing Data for Disaster Response and Recovery Programs - об открытых данных в вопросах чрезвычайных ситуаций и восстановления
- Открытость информационных систем нормотворчества - об открытости/закрытости систем нормотворчества в России

Data engineering
-
Dateno. Global Data Discovery search engine - презентация проекта поиска по данным Dateno
-
Datacrafter. Каталог и озеро данных на базе MongoDB - презентация для выступления на конференции SmartData, о внутренностях продукта Datacrafter и куча технических подробностей

Open Data Armenia
-
Open Finances. International and Armenia overview - обзор проектов по открытости госфинансов в мире и в Армении
- Open Data, Open Code, Open Licenses - о разных компонентах открытости

Открытый код
- Открытый код в других странах - Как и в каком объёме и кто именно публикует открытый код, почему это важно и почему это становится всё более популярным

Приватность
-
Слежка через государственные мобильные приложения - о том как государственные органы следят за гражданами с помощью мобильных приложений и сливают информацию о их передвижении и действиях коммерческим компаниям
- Термины и объекты регулирования: ADM-системы - о том что такое системы для автоматического принятия решения и как они описываются в разных странах
- О необходимости контроля и аудита ADM- систем - о том как регулировать ИИ используемый для автоматического принятия решений

Веб архивация
- Организация веб-архивов - о том как устроены современные интернет архивы и Национальный цифровой архив (ruarxive.org)
- Дата инженерия и цифровая гуманитаристика - о том какие большие цифровые гуманитарные проекты есть в мире и про Национальный цифровой архив

Понятный язык
- Простой и понятный русский язык - о простоте русского языка и её измерении
- Простота нормативно-правового языка - о подходах к оценке нормативно-правовых текстов

P.S. Всего у меня 200+ неразобранных презентаций за последние 15 лет, в онлайне не больше 30. Что-то устаревает, что-то нельзя публиковать, что-то бессмысленно без самого выступления, но, по мере разбора завалов, буду выкладывать дальше.

#opendata #opensource #plainlanguage #webarchives #digitalpreservation #dataengineering #armenia
Прямо интересное явление последних лет - это восхождение декларативного программирования когда дело касается данных и инфраструктуры в первую очередь. Вместо написания кода, пишутся YAML или TOML файлы и на их основе бегают конвейеры данных, разворачивается инфраструктура, создаются базы данных или API сервера.

Вижу всё больше и больше таких продуктов, особенно в областях devOps, dataOps и в продуктах типа ELT/ETL и других в области современного стека данных. Я и сам в инструментах что создавал или создаю делаю такое же.

Очень скоро работа с данными не потребует знаний даже SQL потому что всё будет в этом самом декларативном программировании. Из известных мне популярных ETL/ELT движков разве что Dagster не на декларативных языках, а по модели data-as-a-code, все написано на Python.

Внутри Dateno тоже используется декларативный сбор данных с помощью движка datacrafter [1] который я изначально делал для совсем других задач по извлечению данных из API и по преобразованию файлов. А также вместе с datacrafter там работает движок apibackuper [2] в котором тоже декларативный язык но в виде конфига для Python. Его, по хорошему, надо переписать для работы с конфигом в YAML и ещё многое поправить.

Достоинство декларативных языков в том что легко генерировать эти конфиги. В Dateno краулер создаёт тысячи конфигов под каждый сайт и запускает сбор данных вызовом datacrafter'а, и уже потом собирает результаты и складывает в базу данных.

Большая часть источников данных там - это API, для каждого из которых свой шаблон и свои правила выгрузки. Иногда довольно непростые, но стандартизованные. И из имеющихся ETL движков только dlt такое может. По сути миграция кода - это преобразование одних YAML файлов в другие, при соблюдении ряда условий конечно, что схожие операции можно воспроизвести в другом движке.

Пока главный недостаток почти всех инструментов такого рода в отсутствии хорошей поддержки NoSQL в целом и MongoDB в частности. Из-за чего и приходится пользоваться собственным стеком инструментов.

Ссылки:
[1] https://github.com/apicrafter/datacrafter/
[2] https://github.com/ruarxive/apibackuper

#opensource #dataengineering #thoughts