Неоднократно ссылался на гайды от гугл про машинное обучение, уж очевидно, что им есть что рассказать о ML и больших данных. Нашёл время и прочёл очередную серию статей https://developers.google.com/machine-learning/problem-framing - про постановку задач машинного обучения.
Серия статей подходит для чтения совсем новичкам в ML, но с опытом разработки. Люди с опытом найдут тоже много полезного. Особенно если у вас есть опыт исследователя и вы хотите применять знания в продакшене. Материал будет полезен тем, кто хочет делать продукты с ML, там рассматриваются важные вопросы, как нужно подходить к постановке задачи и о том, как оценить, проанализировать то, что нужно для вашего продукта. Меня особенно порадовало сходство правил по выставлению метрик, с рекомендациями, наподобие SMART, для постановки персональных целей.
Дальше лонгрид резюме, набор полезных сниппетов заметок важных идей для себя. Получилось реально много букв, поэтому вынев в telegraph
https://telegra.ph/Postanovka-zadachi-ML-04-07
#ml #problem #framing #production #engineering
Серия статей подходит для чтения совсем новичкам в ML, но с опытом разработки. Люди с опытом найдут тоже много полезного. Особенно если у вас есть опыт исследователя и вы хотите применять знания в продакшене. Материал будет полезен тем, кто хочет делать продукты с ML, там рассматриваются важные вопросы, как нужно подходить к постановке задачи и о том, как оценить, проанализировать то, что нужно для вашего продукта. Меня особенно порадовало сходство правил по выставлению метрик, с рекомендациями, наподобие SMART, для постановки персональных целей.
Дальше лонгрид резюме, набор полезных сниппетов заметок важных идей для себя. Получилось реально много букв, поэтому вынев в telegraph
https://telegra.ph/Postanovka-zadachi-ML-04-07
#ml #problem #framing #production #engineering
Google for Developers
Introduction to Machine Learning Problem Framing | Google for Developers