#google #gcp #tpu
"На очередной ежегодной конференции Cloud Next компания Google Cloud объявила о выпуске пятого поколения своих тензорных процессоров (TPU) для обучения нейросетей — TPU v5e. Google анонсировала предыдущую, четвертую версию этих процессоров в 2021 году, но разработчикам они стали доступны только в 2022 году.
Компания не экономила на технических характеристиках TPU v5e в угоду рентабельности. Кластеры могут включать до 256 чипов TPU v5e, объединённых высокоскоростным интерконнектом с совокупной пропускной способностью более 400 Тбит/с. Производительность такой платформы составляет 100 Попс (Петаопс) в INT8-вычислениях.
"Мы предоставляем нашим клиентам возможность легко масштабировать свои модели искусственного интеллекта за пределы физических границ одного модуля TPU или одного кластера TPU. Другими словами, одна большая рабочая нагрузка искусственного интеллекта теперь может распределяться на несколько физических кластеров TPU, масштабируясь буквально до десятков тысяч чипов."
В дополнение к анонсу нового поколения TPU компания Google также объявила, что в следующем месяце сделает общедоступными для разработчиков виртуальные кластеры A3, оснащённые специализированными графическими процессорами Nvidia H100."
https://3dnews.ru/1092295/google-cloud-predstavila-pyatoe-pokolenie-svoih-tenzornih-protsessorov-dlya-obucheniya-ii
"На очередной ежегодной конференции Cloud Next компания Google Cloud объявила о выпуске пятого поколения своих тензорных процессоров (TPU) для обучения нейросетей — TPU v5e. Google анонсировала предыдущую, четвертую версию этих процессоров в 2021 году, но разработчикам они стали доступны только в 2022 году.
Компания не экономила на технических характеристиках TPU v5e в угоду рентабельности. Кластеры могут включать до 256 чипов TPU v5e, объединённых высокоскоростным интерконнектом с совокупной пропускной способностью более 400 Тбит/с. Производительность такой платформы составляет 100 Попс (Петаопс) в INT8-вычислениях.
"Мы предоставляем нашим клиентам возможность легко масштабировать свои модели искусственного интеллекта за пределы физических границ одного модуля TPU или одного кластера TPU. Другими словами, одна большая рабочая нагрузка искусственного интеллекта теперь может распределяться на несколько физических кластеров TPU, масштабируясь буквально до десятков тысяч чипов."
В дополнение к анонсу нового поколения TPU компания Google также объявила, что в следующем месяце сделает общедоступными для разработчиков виртуальные кластеры A3, оснащённые специализированными графическими процессорами Nvidia H100."
https://3dnews.ru/1092295/google-cloud-predstavila-pyatoe-pokolenie-svoih-tenzornih-protsessorov-dlya-obucheniya-ii
3DNews - Daily Digital Digest
Google Cloud представила пятое поколение тензорных процессоров для обучения ИИ
На очередной ежегодной конференции Cloud Next компания Google Cloud объявила о выпуске пятого поколения своих тензорных процессоров (TPU) для обучения нейросетей — TPU v5e.
#gcp #cloud #tpu #hardware
"Сегодня Google объявила о запуске новой большой языковой модели Gemini. Вместе с ней компания представила свой новый ИИ-ускоритель Cloud TPU v5e (Tensor processing unit — тензорный процессор). Кластер на базе новых TPU состоит из 8960 чипов v5p и оснащён самым быстрым интерконнектом Google — скорость передачи данных может достигать 4800 Гбит/с на чип.
Cloud TPU v5e оснащён 95 Гбайт памяти HBM3 с пропускной способностью 2765 Гбайт/с. Производительность в целочисленных операциях INT8 составляет 918 TOPS (триллионов операций в секунду), тогда как производительность в вычислениях на числах с плавающей запятой BF16 составляет 459 Тфлопс.
Google утверждает, что новые чипы значительно быстрее, чем образец предыдущего поколения TPU v4. Новый Cloud TPU v5p предложит двукратное увеличение производительности в операциях с плавающей запятой (FLOPS) и трёхкратное увеличение объёма памяти с высокой пропускной способностью.
Что интересно, по производительности на доллар v5p слегка проигрывает представленным недавно ускорителям TPU v5e. Однако последние можно собирать в кластеры лишь до 256 чипов, а один чип обеспечит лишь 197 Тфлопс в BF16 против 275 Тфлопс у TPU v4 и 459 Тфлопс у TPU v5p."
https://3dnews.ru/1097088/google-anonsirovala-svoy-samiy-bistriy-uskoritel-iskusstvennogo-intellekta-cloud-v5p
"Сегодня Google объявила о запуске новой большой языковой модели Gemini. Вместе с ней компания представила свой новый ИИ-ускоритель Cloud TPU v5e (Tensor processing unit — тензорный процессор). Кластер на базе новых TPU состоит из 8960 чипов v5p и оснащён самым быстрым интерконнектом Google — скорость передачи данных может достигать 4800 Гбит/с на чип.
Cloud TPU v5e оснащён 95 Гбайт памяти HBM3 с пропускной способностью 2765 Гбайт/с. Производительность в целочисленных операциях INT8 составляет 918 TOPS (триллионов операций в секунду), тогда как производительность в вычислениях на числах с плавающей запятой BF16 составляет 459 Тфлопс.
Google утверждает, что новые чипы значительно быстрее, чем образец предыдущего поколения TPU v4. Новый Cloud TPU v5p предложит двукратное увеличение производительности в операциях с плавающей запятой (FLOPS) и трёхкратное увеличение объёма памяти с высокой пропускной способностью.
Что интересно, по производительности на доллар v5p слегка проигрывает представленным недавно ускорителям TPU v5e. Однако последние можно собирать в кластеры лишь до 256 чипов, а один чип обеспечит лишь 197 Тфлопс в BF16 против 275 Тфлопс у TPU v4 и 459 Тфлопс у TPU v5p."
https://3dnews.ru/1097088/google-anonsirovala-svoy-samiy-bistriy-uskoritel-iskusstvennogo-intellekta-cloud-v5p
3DNews - Daily Digital Digest
Google представила свой самый быстрый ИИ-ускоритель — Cloud v5p
Сегодня Google объявила о запуске новой большой языковой модели Gemini.
#hardware #google #tpu
"В этом году у Google выйдет шестое поколение TPU Trillium; кроме того, в минувшем апреле компания анонсировала и Axion — свой первый центральный процессор, который появится в конце года. И здесь Google уже не первая: Amazon выпустила свой Graviton в 2018 году, китайская Alibaba последовала её примеру в 2021 году, а Microsoft представила чип Cobalt 100 в ноябре прошлого года. Все они основаны на архитектуре Arm, более гибкой и энергоэффективной, чем x86, которой привержены Intel и AMD."
https://3dnews.ru/1109922/modeli-ii-gemini-i-apple-intelligence-obuchayutsya-na-sobstvennih-tenzornih-protsessorah-google
"В этом году у Google выйдет шестое поколение TPU Trillium; кроме того, в минувшем апреле компания анонсировала и Axion — свой первый центральный процессор, который появится в конце года. И здесь Google уже не первая: Amazon выпустила свой Graviton в 2018 году, китайская Alibaba последовала её примеру в 2021 году, а Microsoft представила чип Cobalt 100 в ноябре прошлого года. Все они основаны на архитектуре Arm, более гибкой и энергоэффективной, чем x86, которой привержены Intel и AMD."
https://3dnews.ru/1109922/modeli-ii-gemini-i-apple-intelligence-obuchayutsya-na-sobstvennih-tenzornih-protsessorah-google
CNBC
How Google makes custom chips used to train Apple AI models and its own chatbot, Gemini
Google makes custom AI chips called TPUs, and Apple uses them to train its AI models. CNBC got an exclusive look inside the lab where Google makes its chips.
#google #tpu #hardware
"Компания Google сообщила о том, что её новейшие ИИ-ускорители TPU v6 с кодовым именем Trillium доступны клиентам для ознакомления в составе облачной платформы GCP. Утверждается, что на сегодняшний день новинка является самым эффективным решением Google по соотношению цена/производительность.
Официальная презентация Trillium состоялась в мае нынешнего года. Изделие оснащено 32 Гбайт памяти HBM с пропускной способностью 1,6 Тбайт/с, а межчиповый интерконнект ICI обеспечивает возможность передачи данных со скоростью до 3,58 Тбит/с (по четыре порта на чип). Задействованы блоки SparseCore третьего поколения.
Один узел включает восемь ускорителей TPU v6e (в двух NUMA-доменах), два неназванных процессора (суммарно 180 vCPU), 1,44 Тбайт RAM и четыре 200G-адаптера (по два на CPU) для связи с внешним миром. Отмечается, что посредством ICI напрямую могут быть объединены до 256 изделий Trillium, а агрегированная скорость сетевого подключение такого кластера (Pod) составляет 25,6 Тбит/с. Десятки тысяч ускорителей могут быть связаны в масштабный ИИ-кластер благодаря платформе Google Jupiter с оптической коммутацией, совокупная пропускная способность которой достигает 13 Пбит/с.
Заявляется, что благодаря ПО Multislice Trillium обеспечивается практически линейное масштабирование производительности для рабочих нагрузок, связанных с обучением ИИ. Производительность кластеров на базе Trillium может достигать 91 Эфлопс на ИИ-операциях: это в четыре раза больше по сравнению с самыми крупными развёртываниями систем на основе TPU v5p. BF16-производительность одного чипа TPU v6e составляет 918 Тфлопс, а INT8 — 1836 Топс.
В бенчмарках Trillium по сравнению с TPU v5e показал более чем четырёхкратное увеличение производительности при обучении моделей Gemma 2-27b, MaxText Default-32b и Llama2-70B, а также более чем трёхкратный прирост для LLama2-7b и Gemma2-9b. Кроме того, Trillium обеспечивает трёхкратное увеличение производительности инференса для Stable Diffusion XL (по отношению к TPU v5e). По соотношению цена/производительность TPU v6e демонстрирует 1,8-кратный рост по сравнению с TPU v5e и примерно двукратный рост по сравнению с TPU v5p."
https://servernews.ru/1113447
"Компания Google сообщила о том, что её новейшие ИИ-ускорители TPU v6 с кодовым именем Trillium доступны клиентам для ознакомления в составе облачной платформы GCP. Утверждается, что на сегодняшний день новинка является самым эффективным решением Google по соотношению цена/производительность.
Официальная презентация Trillium состоялась в мае нынешнего года. Изделие оснащено 32 Гбайт памяти HBM с пропускной способностью 1,6 Тбайт/с, а межчиповый интерконнект ICI обеспечивает возможность передачи данных со скоростью до 3,58 Тбит/с (по четыре порта на чип). Задействованы блоки SparseCore третьего поколения.
Один узел включает восемь ускорителей TPU v6e (в двух NUMA-доменах), два неназванных процессора (суммарно 180 vCPU), 1,44 Тбайт RAM и четыре 200G-адаптера (по два на CPU) для связи с внешним миром. Отмечается, что посредством ICI напрямую могут быть объединены до 256 изделий Trillium, а агрегированная скорость сетевого подключение такого кластера (Pod) составляет 25,6 Тбит/с. Десятки тысяч ускорителей могут быть связаны в масштабный ИИ-кластер благодаря платформе Google Jupiter с оптической коммутацией, совокупная пропускная способность которой достигает 13 Пбит/с.
Заявляется, что благодаря ПО Multislice Trillium обеспечивается практически линейное масштабирование производительности для рабочих нагрузок, связанных с обучением ИИ. Производительность кластеров на базе Trillium может достигать 91 Эфлопс на ИИ-операциях: это в четыре раза больше по сравнению с самыми крупными развёртываниями систем на основе TPU v5p. BF16-производительность одного чипа TPU v6e составляет 918 Тфлопс, а INT8 — 1836 Топс.
В бенчмарках Trillium по сравнению с TPU v5e показал более чем четырёхкратное увеличение производительности при обучении моделей Gemma 2-27b, MaxText Default-32b и Llama2-70B, а также более чем трёхкратный прирост для LLama2-7b и Gemma2-9b. Кроме того, Trillium обеспечивает трёхкратное увеличение производительности инференса для Stable Diffusion XL (по отношению к TPU v5e). По соотношению цена/производительность TPU v6e демонстрирует 1,8-кратный рост по сравнению с TPU v5e и примерно двукратный рост по сравнению с TPU v5p."
https://servernews.ru/1113447
ServerNews - все из мира больших мощностей
Google объявила о доступности ИИ-ускорителей TPU v6 Trillium
Компания Google сообщила о том, что её новейшие ИИ-ускорители TPU v6 с кодовым именем Trillium доступны клиентам для ознакомления в составе облачной платформы GCP. Утверждается, что на сегодняшний день новинка является самым эффективным решением Google по…
#hardware #tpu #gpu
Странный подход, сравнивать решения разной архитектуры поштучно. Какая мне нафиг разница, сколько там штук TPU будет, мне важна стоимость железа и электроэнергии.
"Система из 6144 TPU v5p достигла контрольной точки обучения GPT-3 за 11,77 мин, отстав от системы с 11 616 H100, которая выполнила задачу примерно за 3,44 мин. При одинаковом же количестве ускорителей решения Google почти вдвое отстают от решений NVIDIA, а разница между v5p и v6e составляет менее 10 %."
https://servernews.ru/1114029
Странный подход, сравнивать решения разной архитектуры поштучно. Какая мне нафиг разница, сколько там штук TPU будет, мне важна стоимость железа и электроэнергии.
"Система из 6144 TPU v5p достигла контрольной точки обучения GPT-3 за 11,77 мин, отстав от системы с 11 616 H100, которая выполнила задачу примерно за 3,44 мин. При одинаковом же количестве ускорителей решения Google почти вдвое отстают от решений NVIDIA, а разница между v5p и v6e составляет менее 10 %."
https://servernews.ru/1114029
ServerNews - все из мира больших мощностей
Google и NVIDIA показали первые результаты TPU v6 и B200 в ИИ-бенчмарке MLPerf Training
Ускорители Blackwell компании NVIDIA опередили в бенчмарках MLPerf Training 4.1 чипы H100 более чем в 2,2 раза, сообщил The Register. По словам NVIDIA, более высокая пропускная способность памяти в Blackwell также сыграла свою роль. Тесты были проведены с…