Aspiring Data Science
327 subscribers
390 photos
10 videos
6 files
1.46K links
Заметки экономиста о программировании, прогнозировании и принятии решений, научном методе познания.
Контакт: @fingoldo

I call myself a data scientist because I know just enough math, economics & programming to be dangerous.
Download Telegram

#hardware #mlperf #benchmark

NVIDIA снова поставила рекорды в ИИ-бенчмарке MLPerf Inference, но конкурентов у неё становится всё больше

"В целом, NVIDIA продолжает доминировать по показателям производительности, лидируя во всех категориях. Вместе с тем стартапы Neuchips и SiMa обошли NVIDIA по производительности в пересчёте на Ватт по сравнению с показателями NVIDIA H100 и Jetson AGX Orin соответственно. Ускоритель Qualcomm Cloud AI100 также показал хорошие результаты энергоэффективности в сравнении NVIDIA H100 в некоторых сценариях."

https://servernews.ru/1084751
#hardware #benchmarks #mlperf #opticloud

Постараюсь прояснить идею с либой ML бенчмарка. Зачастую непонятно, какой сервер лучше взять под конкретную ML-задачу. Если дело касается нейросетей, то вроде бы есть бенчмарки dlperf. Также при выходе новых CPU/GPU указывают производительность в Stockfish, WinZip, Pytorch/Tensorflow.

А если у вас табличные данные? Брать ли сервер на AMD Rome с 112 vcores, Xeon Gold с 80 vcores, или одна RTX 4090 их легко зарулит? А две RTX 3090? А насколько быстрее/медленнее будет одна H100? А может, вообще стоит посмотреть в сторону GPU от AMD?

У меня одного такие проблемы выбора, или отсутствие подобной информации и, как следствие, выбор наобум по принципу ХЗ всех смущает?

Может, есть какие-то сводные таблицы перформанса, которые вы смотрите и по которым принимаете решение? Или как-то пытаетесь экстраполировать результаты существующих бенчмарков?

На текущий момент у меня есть идея разработки простенькой питон либы с открытым исходным кодом, на базе, скажем, catboost, с методами

run_ml_benchmarks(tabular=True,training=True,inference=True,nreps=10)
get_ml_rankings(query='rtx 3090')
get_ml_leaderboard()

которая сможет автоопределять ваше железо, запускать несколько задач с фиксированными сидами и гиперпараметрами, прогонять nreps раз, и сохранять результат в общее облако. ну и, конечно, показывать лидерборд и результаты конкретного железа (медиану, дисперсию). При наличии такой либы все вопросы выше отвечаются pip install-ом + одним вызовом get_ml_leaderboard.
#mlperf #aws #opticloud

Итак, планируем архитектуру скрипта с открытым исходным кодом, делающего замеры производительности железа в ML-задачах и сохранение результатов в облако.

Очень заманчиво позволить скрипту напрямую писать результаты в облачную базу данных, но с таким подходом есть риск, что кто-то заспамит базу поддельными записями, и вся работа сообщества пойдёт насмарку.

Не вижу другого выхода как сделать отправку результатов аутентифицированной, т.е., запускающему бенчмарк потребуется логиниться в свой аккаунт, скажем, гугл, чтобы информация о тестере сохранялась и можно было потом результаты спамеров отсеять.

Также придётся реализовать какой-то механизм ratelimiting, чтобы даже аутентифицированный пользователь не мог завалить базу миллионами записей.

Мне захотелось реализовать сервис mlperf в облаке AWS, так что пока архитектура выглядит как API Gateway->Lambda->ElastiCache/Redis->DocumentDB:

0) пользователь, желающий внести вклад в тестирование железа, запускает скрипт mlperf в командной строке или делает вызов benchmark(...) из питон-кода.
1) пользователь вводит код аутентификации от гугл (перейдя в браузере по ссылке, напечатанной скриптом)
2) скрипт выполняет тестирование и передаёт полезную инфу+код в json по https на url приложения mlperf.
3) запускается lambda-функция, проверяющая размеры переданной информации, извлекающая емэйл пользователя из auth кода.
4) попадание в рэйтлимиты проверяется с помощью развёрнутого ElastiCache/Redis (INCR/EXPIRE)
5) если проверки пройдены, инфа сохраняется в основную таблицу DocumentDB.
6) клиенту возвращается статус операции.

7) некий демон (Максвелла?) в виде очередной Lambda периодически отбрасывает аномалии и аггрегирует все результаты в лидерборд.

Предложения/замечания?
#mlperf #aws #opticloud

Что конкретно тестировать?

Основная идея была в тестировании 3 современных библиотек градиентного бустинга - CatBoost, LightGBM, XGBoost, причём только на задаче обучения и на одном датасете с фиксированным размером, гиперпараметрами и сидами. Даже нет, не 3 бустингов, а 1 - катбуста, т.к. казалось, что сравнительные результаты 2 остальных не будут отличаться.

Потом появилось понимание, что между библиотеками/реализациями могут быть нюансы. К примеру, катбуст может из коробки использовать несколько GPU. LightGBM вообще самый проблемный в плане использования GPU, там на *nix надо танцевать с бубнами.

В случае катбуста и мульти GPU пересылка данных может стоить слишком дорого и даже ухудшать результаты по сравнению с 1 GPU, так что, похоже, надо предусмотреть несколько вариантов размера данных. И при multigpu делать тесты начиная с одного устройства и далее 2, 4, 8...

Также пришла идея замерять инференс (возможно, опционально с интеловским ускорением). Опять же, некоторые либы поддерживают инференс на GPU (XGBoost точно).

Нужен ли RAPIDS, им кто-то вообще пользуется?

DL бенчмарки по идее можно раскопать, и я не думал их добавлять, но всё же... Надо ли кому-то? Скажем, Pytorch Lightning на CPU/GPU, с разными стратегиями шардирования и точностями (float 64/32/16 etc)? если добавлять нейросети, то тогда нужен тест архитектуры со свёртками, т.к. для свёрток сильно докидывают тензорные ядра.

Еще не совсем ясно, что делать, если у пользователя на момент запуска бенчмарка уже загружены некоторые ядра/видеокарты. Морду кирпичом и гнать тесты? Не запускать тесты, пока все не освободятся? Запускать, но с уменьшенным количеством ресурсов?

По поводу инфы о железе: думаю собирать полную, т.е. не только названия моделей CPU/GPU/RAM, но и частоты, характеристики.

С частотами неясно, как их лучше мониторить. Если замерять до запуска скрипта, на машинах с энергосбережением они ведь окажутся заниженными. Получается, надо в отдельном потоке как-то собирать каждую секунду и потом брать средние за время работы скрипта? Возможно, то же самое придётся делать с показателями nvidia-smi.

По софтовой части, обязательно фиксировать версии бустингов, cuda, runtime (python), os, opencl (?).
#opticloud #mlperf #fun

Family: 179 😅
#opticloud #mlperf #tabularml

Немного новостей по грядущей утилитке tabular ml benchmark.

Закончил написание сборщиков информации о системе, CPU, GPU для Windows и Linux. MacOS пока не поддерживается.

Собирается очень много информации: все флаги способностей центрального процессора (спасибо cpuinfo), детальные cuda capabilities каждого GPU (спасибо numba.cuda).
Еще больше детализированной информации (RAM, Board, Bios, Cache, OS) собирается через os-специфичные способы доступа: wmi для Windows, dmidecode для Linux.

Завершил тестирование мониторинга загрузки железа. Эта штука запускается в отдельном потоке, ждёт 1 секунду и начинает каждую секунду замерять загрузку процессора, памяти, и выбранных GPU.
По прекращении теста данные усредняются. Пример выдачи (без реальной нагрузки):

Average hardware Utilization: {'cpu_utilizaton_percent': 2.725, 'cpu_clocks_mhz': 2601.0, 'own_ram_used_gb': 0.164, 'total_ram_used_gb': 17.538, 'total_ram_free_gb': 110.409, 'gpu_ram_free_gb': 7.61, 'gpu_ram_used_gb': 0.231, 'gpu_clocks_mhz': 82.25, 'gpu_utilizaton_percent': 12.75, 'gpu_power_draw_watt': 7.83, 'gpu_temp_celsius': 39.0}


Думаю об эффективном хранении результатов тестов. Пока идея такая: юзер запускает скрипт, скрипт фиксирует железо и передаёт полную опись в облако. Железо попадает в табличку user_sessions, обратно отдаётся session_uuid. Скрипт начинает прогонять различные тесты, каждые N секунд сбрасывая в облако накопленные результаты со своим session_uuid. Тем самым обеспечивается компактность таблицы результатов (и хотя бы частичная сохранность данных в случае какого-то железного крэша).

Как планирую хранить инфу о железе: описание каждого CPU/GPU имеет сотни полей. Думаю при получении новой записи сортировать словарь и считать хэш от его текстового представления (удалив переменные поля типа name). Если такого хэша в таблице hw_info ещё нет - добавлять запись. В таблице же user_sessions хранить массивы hw_hashes. Помимо очевидной экономии места, это позволит распознавать процессоры, для которых не указана модель (в контейнерах и инженерных образцах и не такое встречается).

По поводу архитектуры - возможно, добавлю еще слой SQS, куда будут быстро складироваться результаты тестов (а потом уже пакетно забираться в базу).

Перехожу к обновлению ассортимента ML-тестов. Решил добавлять все 3 градиентных бустинга в CPU и GPU режиме. lightgbm в GPU режиме работает через opencl, в cuda-режиме мне его скомпилировать не удалось.
XGBoost хочу ещё попробовать в Dask-версии.

Возможно, еще добавлю что-то из Rapids/cuml - лес и опорные вектора?

Ах да, и будет pytorch-lightning.
#opticloud #mlperf #tabularml

Новости по проекту. Немного затормозил с оптимизированным сохранением результатов инвентаризации системы в базу, но в итоге всё работает как и планировалось - данные быстро дедуплицируются и эффективно хранятся, используется кэш "железной" детализации.

Улучшил парсинг dmidecode и lscpu. Добавил сохранение battery_info, power_plan, large_pages_support (всё кросс-платформенно).

Начал крутить тесты, и тут вылезли интересные детали. Как меня и предупреждали, тайминги обучения модели (даже относительные, например, катбуст CPU vs катбуст GPU) оказались сильно зависимы не только от типа задачи (к примеру, регрессия vs мультирегрессия), но и от размера датасета (разница от 2 до 5 раз).

(Кстати, пришлось некоторые гиперпараметры жёстко прописать, типа border_count= 128,learning_rate=0.1 для катбуста, если этого не сделать, по умолчанию в CPU-режиме border_count будет назначен вдвое выше, и будет казаться, что CPU-версия еще медленнее, чем она есть. а learning_rate при её неуказывании вообще подбирается адаптивно и во многом случайно.)

Скорее всего, обнаружатся такие гиперпараметры, которые будут сильно сдвигать соотношения таймингов CPU vs GPU, но тут ничего не сделать, кроме как запускать тест в 3 вариантах (small, medium, big) и, возможно, в нескольких наиболее часто используемых конфигах (но каких?).

Главное, чтобы соотношения таймингов не сдвигались по железу. Попытаюсь это проверить, думаю сгенерить какую-то детерминированную россыпь гиперпараметров и по ней пройтись на нескольких разных машинах. Если соотношения (в разбивке по HP) между машинами примерно сохранятся, норм.