#featureselection #hyperopt
Интересный факт: дефолтный сэмплер hyperopt-a, а именно, tpe, существенно хуже tpe из optuna (возможно, потому, что в hyperopt у него нет настроек)? Зато адаптивный TPE, то есть, atpe, на одномерной задаче FS зарулил всё остальное и из оптуны, и из скопта - правда, только для 50 итераций. Для 20 он хуже оптуны. + имеет самое долгое время работы (20 секунд на 50 итераций) и загрузку процессоров.
Интересный факт: дефолтный сэмплер hyperopt-a, а именно, tpe, существенно хуже tpe из optuna (возможно, потому, что в hyperopt у него нет настроек)? Зато адаптивный TPE, то есть, atpe, на одномерной задаче FS зарулил всё остальное и из оптуны, и из скопта - правда, только для 50 итераций. Для 20 он хуже оптуны. + имеет самое долгое время работы (20 секунд на 50 итераций) и загрузку процессоров.
#news #automl #plans
ML/DS-планы на 2024-й.
Как-то незаметно прошло уже почти полгода! Поймал себя на том, что двигаюсь к своей мини-automl системе. Скажете, почему не возьмёшь готовую? Ответ обычный, хочешь чтоб было сделано хорошо - сделай сам (если у тебя есть экспертиза и классные идеи).
В рамках этой automl системы будут:
1) 2 отборщика признаков из Diogenes, MRMR и RFECV.
MRMR уже получил навык создания комбинаций признаков (feature engineering), его надо ускорить (запараллелить) и лучше потестировать подмодуль с ортогональными полиномами (там будет полезен хороший оптимизатор, сейчас стоит оптуна и работает через пень-колоду)
2) мой будущий классный MBHO оптимизатор HPT. мне уже удалось побить оптуну, гиперопт, скопт в задачах одномерной оптимизации (для решения проблемы feature selection, см бенчи по тегам #featureselection #hpt #optuna #hyperopt #skopt), пора его расширить на многомерный случай
3) модуль ансамблирования ENS. будет простое усреднение (много оттенков) и стэкинг. из ноу-хау тут будут instance-based confidence, numaggs over level 0 predictions, identity level 1 baseline, аугментация табличных данных. Для расширения ENS планируется написать универсальную обёртку для ранней остановки. С этой идеей ношусь уже несколько лет, да никак не сделаю. Смысл обёртки в том, чтобы дать функционал early stopping/overfitting detection тем моделькам, которые сами нативно его не поддерживают - путём partial_fit или дихотомического поиска по n_iterations.
Отборщики признаков получат апгрейд и во время своей работы будут собирать ценную информацию для модулей HPT (MRMR считает базовые статистики признаков, силу связей с таргетами и между собой; RFECV создаёт пары гиперпараметры-ml метрики для последующего обучения MBHO) и ENS (будут замерять, насколько прогнозы моделек с определёнными признаками и гиперпараметрами декоррелированы и спосбны помочь ансамблю).
Также планируется большое обновление Diogenes, после которого избыточные признаки опционально будут не удаляться из набора, а сливаться в единый "кластер" c primary (если это будет повышать стабильность). Идея взята из лекций Эрни Чана. Это может быть полезно, когда 1 скрытый драйвер влияет на множество факторов в датасете. Текущая реализация MRMR выбирает 1 фактор с самой сильной MI на таргет, остальные выкидывает, что приводит к потере информации если влияние драйвера на факторы неоднородно по инстансам или времени.
Ещё MRMR получит шаг удаления признака (чтобы сильный признак мог всё же уступать более удачной комбинации) и параллельные списки, когда на каждом шаге не просто берётся лучший кандидат, а N лучших кандидатов формируют "параллельную реальность" (идея взята у Тима Мастерса).
Хочу также изучить гибриды между MRMR и RFECV (например, все признаки отброшенные MRMR прогонять через RFECV).
ML/DS-планы на 2024-й.
Как-то незаметно прошло уже почти полгода! Поймал себя на том, что двигаюсь к своей мини-automl системе. Скажете, почему не возьмёшь готовую? Ответ обычный, хочешь чтоб было сделано хорошо - сделай сам (если у тебя есть экспертиза и классные идеи).
В рамках этой automl системы будут:
1) 2 отборщика признаков из Diogenes, MRMR и RFECV.
MRMR уже получил навык создания комбинаций признаков (feature engineering), его надо ускорить (запараллелить) и лучше потестировать подмодуль с ортогональными полиномами (там будет полезен хороший оптимизатор, сейчас стоит оптуна и работает через пень-колоду)
2) мой будущий классный MBHO оптимизатор HPT. мне уже удалось побить оптуну, гиперопт, скопт в задачах одномерной оптимизации (для решения проблемы feature selection, см бенчи по тегам #featureselection #hpt #optuna #hyperopt #skopt), пора его расширить на многомерный случай
3) модуль ансамблирования ENS. будет простое усреднение (много оттенков) и стэкинг. из ноу-хау тут будут instance-based confidence, numaggs over level 0 predictions, identity level 1 baseline, аугментация табличных данных. Для расширения ENS планируется написать универсальную обёртку для ранней остановки. С этой идеей ношусь уже несколько лет, да никак не сделаю. Смысл обёртки в том, чтобы дать функционал early stopping/overfitting detection тем моделькам, которые сами нативно его не поддерживают - путём partial_fit или дихотомического поиска по n_iterations.
Отборщики признаков получат апгрейд и во время своей работы будут собирать ценную информацию для модулей HPT (MRMR считает базовые статистики признаков, силу связей с таргетами и между собой; RFECV создаёт пары гиперпараметры-ml метрики для последующего обучения MBHO) и ENS (будут замерять, насколько прогнозы моделек с определёнными признаками и гиперпараметрами декоррелированы и спосбны помочь ансамблю).
Также планируется большое обновление Diogenes, после которого избыточные признаки опционально будут не удаляться из набора, а сливаться в единый "кластер" c primary (если это будет повышать стабильность). Идея взята из лекций Эрни Чана. Это может быть полезно, когда 1 скрытый драйвер влияет на множество факторов в датасете. Текущая реализация MRMR выбирает 1 фактор с самой сильной MI на таргет, остальные выкидывает, что приводит к потере информации если влияние драйвера на факторы неоднородно по инстансам или времени.
Ещё MRMR получит шаг удаления признака (чтобы сильный признак мог всё же уступать более удачной комбинации) и параллельные списки, когда на каждом шаге не просто берётся лучший кандидат, а N лучших кандидатов формируют "параллельную реальность" (идея взята у Тима Мастерса).
Хочу также изучить гибриды между MRMR и RFECV (например, все признаки отброшенные MRMR прогонять через RFECV).