#umap #trustworthiness #geometry
https://towardsdatascience.com/on-the-validating-umap-embeddings-2c8907588175
https://towardsdatascience.com/on-the-validating-umap-embeddings-2c8907588175
Medium
On the Validation of UMAP
There is not a large body of practical work on validating Uniform Manifold Approximation and Projection (UMAP). In this blog post, I will show you a real example, in hopes to provide an additional…
👍1
#ml #geometry #informationtheory
Любопытный пакет infotopo для расчёта и визуализации всяких энтропий, взаимных информаций и прочего на решётках (почти на гриле). От французских учёных.
https://infotopo.readthedocs.io/en/latest/basic_methods.html
Любопытный пакет infotopo для расчёта и визуализации всяких энтропий, взаимных информаций и прочего на решётках (почти на гриле). От французских учёных.
https://infotopo.readthedocs.io/en/latest/basic_methods.html
👍1
#math #geometry
Кто ещё помнит теоремы о треугольниках, ставьте на паузу и пробуйте решить )
https://www.youtube.com/watch?v=ofZEN6GOAk0
Кто ещё помнит теоремы о треугольниках, ставьте на паузу и пробуйте решить )
https://www.youtube.com/watch?v=ofZEN6GOAk0
YouTube
Советская олимпиада, которую сегодня решить только 2% школьников
Мой канал в VK — https://vk.com/yellow.school
Найди углы прямоугольного треугольника, если его гипотенуза равна 4, а площадь — 2.
Найди углы прямоугольного треугольника, если его гипотенуза равна 4, а площадь — 2.
#geometry
"Compact Ricci-flat Calabi-Yau and holonomy G2 manifolds appear in string and M-theory respectively as descriptions of the extra spatial dimensions that arise in the theories. Since 2017 machine-learning techniques have been applied extensively to study Calabi-Yau manifolds but until 2024 no similar work had been carried out on holonomy G2 manifolds. In this talk, I will firstly show how topological properties of these manifolds can be learnt using neural networks. I will then discuss how one could try to numerically learn metrics on compact holonomy G2 manifolds using machine-learning and why these approximations would be useful in M-theory."
https://www.youtube.com/watch?v=3gRquXqwtU8
"Compact Ricci-flat Calabi-Yau and holonomy G2 manifolds appear in string and M-theory respectively as descriptions of the extra spatial dimensions that arise in the theories. Since 2017 machine-learning techniques have been applied extensively to study Calabi-Yau manifolds but until 2024 no similar work had been carried out on holonomy G2 manifolds. In this talk, I will firstly show how topological properties of these manifolds can be learnt using neural networks. I will then discuss how one could try to numerically learn metrics on compact holonomy G2 manifolds using machine-learning and why these approximations would be useful in M-theory."
https://www.youtube.com/watch?v=3gRquXqwtU8
YouTube
Elli Heyes | Machine Learning G2 Geometry
New Technologies in Mathematics Seminar 3/5/2025
Speaker: Elli Heyes, Imperial College
Title: Machine Learning G2 Geometry
Abstract: Compact Ricci-flat Calabi-Yau and holonomy G2 manifolds appear in string and M-theory respectively as descriptions of the…
Speaker: Elli Heyes, Imperial College
Title: Machine Learning G2 Geometry
Abstract: Compact Ricci-flat Calabi-Yau and holonomy G2 manifolds appear in string and M-theory respectively as descriptions of the…