#ml #explainability #shap
Что, если кэфы Шеппли вычисляются слишком долго? Давайте попробуем при их вычислении уйти от подстановки всех значений переменной в сторону полного переобучения модели БЕЗ этой переменной (Naive Shapley), подумал автор этого поста. Идея интересная, только реальным сравнением и можно выявить слабости существующих инструментов (см. пост выше про баг в матплотлибе). Но, мне кажется, картинка из бенча самого автора весьма выразительна.
Что, если кэфы Шеппли вычисляются слишком долго? Давайте попробуем при их вычислении уйти от подстановки всех значений переменной в сторону полного переобучения модели БЕЗ этой переменной (Naive Shapley), подумал автор этого поста. Идея интересная, только реальным сравнением и можно выявить слабости существующих инструментов (см. пост выше про баг в матплотлибе). Но, мне кажется, картинка из бенча самого автора весьма выразительна.
❤1👀1
#ml #explainability #shap
"Prediction is a game played by the feature values."
https://christophm.github.io/interpretable-ml-book/shapley.html
"Prediction is a game played by the feature values."
https://christophm.github.io/interpretable-ml-book/shapley.html
#shap #explainability #ml
Шок-контент, либа SHAP, оказывается, не поддерживается уже несколько лет. Может, автор умер, или просто забил, не знаю. А я-то думаю, чего она такая медленная, ужасный код, а тут ещё вчера выяснилось, что ошибки, всплывавшие ещё пару лет тому, до сих пор не исправлены, и issues висят открытые. Так что лучше полагайтесь на другие реализации, если найдёте. Вроде в Rapids/CuML что-то есть.
Шок-контент, либа SHAP, оказывается, не поддерживается уже несколько лет. Может, автор умер, или просто забил, не знаю. А я-то думаю, чего она такая медленная, ужасный код, а тут ещё вчера выяснилось, что ошибки, всплывавшие ещё пару лет тому, до сих пор не исправлены, и issues висят открытые. Так что лучше полагайтесь на другие реализации, если найдёте. Вроде в Rapids/CuML что-то есть.
👍3😢1😨1