Forwarded from Artem Ryblov’s Data Science Weekly
How to Win a Kaggle Competition by Darek Kłeczek
Darek Kłeczek:
In this essay, author starts by providing a quick overview of the process he uses to collect data. He then presents several insights from analyzing datasets. The focus is to understand what the community has learned over the past 2 years of working and experimenting with Kaggle competitions. Finally, he mentions some ideas for future research.
Link: Kaggle
Navigational hashtags: #armknowledgesharing #armtutorials
General hashtags: #kaggle #competitions
Darek Kłeczek:
When I join a competition, I research winning solutions from past similar competitions. It takes a lot of time to read and digest them, but it's an incredible source of ideas and knowledge. But what if we could learn from all the competitions? We've been given a list of Kaggle writeups in this competition, but there are so many of them! If only we could find a way to extract some structured data and analyze it... Well, it turns out that large language models (LLMs) [1] can help us extract structured data from unstructured writeups.
In this essay, author starts by providing a quick overview of the process he uses to collect data. He then presents several insights from analyzing datasets. The focus is to understand what the community has learned over the past 2 years of working and experimenting with Kaggle competitions. Finally, he mentions some ideas for future research.
Link: Kaggle
Navigational hashtags: #armknowledgesharing #armtutorials
General hashtags: #kaggle #competitions