#Math:
35! = 10333147966386144929*66651337523200000000
ga teng. Qo'yida keltirilgan raqamlardan qaysi biri * o'rniga kelishi mumkin
PS:Computerdan foydalanmaysilar degan umiddaman
35! = 10333147966386144929*66651337523200000000
ga teng. Qo'yida keltirilgan raqamlardan qaysi biri * o'rniga kelishi mumkin
PS:Computerdan foydalanmaysilar degan umiddaman
🤔3👍2
Media is too big
VIEW IN TELEGRAM
#Math_Force
Game va Animation productive dasturlashdagi matematikaning o'rni albatta oxirigacha ko'rishni tavsiya etaman.
Game va Animation productive dasturlashdagi matematikaning o'rni albatta oxirigacha ko'rishni tavsiya etaman.
🔥7
Bir ajoib va menimcha hammaga tezda tushunarli buladigan masalani sizlar bilan bo'lishmoqchiman.
Menimcha hamma faktorial haqida xabari bor.
n! (yoki n faktorial) bu 1 dan n gacha bo'lgan barcha sonlar ko'paytmasi.
Masalan:
4!=1*2*3*4
5!=1*2*3*4*5
........................
Demak n! = 1*2*3*4*....*n (0!=1 deb olishadi odadta)
va albatta hamma raqamdan sonni farqiga boradi degan umiddaman.
___________________________________________________________________________
Agar doskada d raqamini n! marotaba yozsak u qaysi toq raqamlarga bo'linadi?(Bu codeforces sodda masalalaridan biri)
n = 1...10^9 gacha
Masalan d=1 n=3
3!=1*2*3=6
111111-shu son qaysi toq raqamlarga bo'linadi?
toq raqamlar 1 3 5 7 9
shu lardan 1 3 7 ga bulinadi.
Algoritmingizni izohlarda qoldiring.
#Logic
#Math
Menimcha hamma faktorial haqida xabari bor.
n! (yoki n faktorial) bu 1 dan n gacha bo'lgan barcha sonlar ko'paytmasi.
Masalan:
4!=1*2*3*4
5!=1*2*3*4*5
........................
Demak n! = 1*2*3*4*....*n (0!=1 deb olishadi odadta)
va albatta hamma raqamdan sonni farqiga boradi degan umiddaman.
___________________________________________________________________________
Agar doskada d raqamini n! marotaba yozsak u qaysi toq raqamlarga bo'linadi?(Bu codeforces sodda masalalaridan biri)
n = 1...10^9 gacha
Masalan d=1 n=3
3!=1*2*3=6
111111-shu son qaysi toq raqamlarga bo'linadi?
toq raqamlar 1 3 5 7 9
shu lardan 1 3 7 ga bulinadi.
Algoritmingizni izohlarda qoldiring.
#Logic
#Math
⚡2👍2
Algo Vision
Bir ajoib va menimcha hammaga tezda tushunarli buladigan masalani sizlar bilan bo'lishmoqchiman. Menimcha hamma faktorial haqida xabari bor. n! (yoki n faktorial) bu 1 dan n gacha bo'lgan barcha sonlar ko'paytmasi. Masalan: 4!=1*2*3*4 5!=1*2*3*4*5 .....…
en:
I want to share with you an interesting problem that I think will be easy for everyone to understand.
I believe everyone is familiar with the concept of a factorial.
n! (or n factorial) is the product of all numbers from 1 to n.
For example:
4! = 1 × 2 × 3 × 4
5! = 1 × 2 × 3 × 4 × 5
...
So, n! = 1 × 2 × 3 × 4 × ... × n (and by convention, 0! = 1).
Hopefully, everyone understands this so far.
The problem:
If the digit d is written n! times on the board, which odd numbers will it be divisible by?
(This is one of the simple problems from Codeforces.)
Given:
n = 1...10^9
Example:
d = 1, n = 3
3! = 1 × 2 × 3 = 6
Writing 1 6 times gives us 111111. Which odd numbers is this divisible by?
Odd numbers: 1, 3, 5, 7, 9
From these, 111111 is divisible by 1, 3, and 7.
Leave your algorithm in the comments!
#math
#logick
I want to share with you an interesting problem that I think will be easy for everyone to understand.
I believe everyone is familiar with the concept of a factorial.
n! (or n factorial) is the product of all numbers from 1 to n.
For example:
4! = 1 × 2 × 3 × 4
5! = 1 × 2 × 3 × 4 × 5
...
So, n! = 1 × 2 × 3 × 4 × ... × n (and by convention, 0! = 1).
Hopefully, everyone understands this so far.
The problem:
If the digit d is written n! times on the board, which odd numbers will it be divisible by?
(This is one of the simple problems from Codeforces.)
Given:
n = 1...10^9
Example:
d = 1, n = 3
3! = 1 × 2 × 3 = 6
Writing 1 6 times gives us 111111. Which odd numbers is this divisible by?
Odd numbers: 1, 3, 5, 7, 9
From these, 111111 is divisible by 1, 3, and 7.
Leave your algorithm in the comments!
#math
#logick
⚡3👍2