DLeX: AI Python
22.6K subscribers
4.99K photos
1.22K videos
764 files
4.35K links
هوش‌مصنوعی و برنامه‌نویسی

توییتر :

https://twitter.com/NaviDDariya

هماهنگی و تعرفه تبلیغات : @navidviola
Download Telegram
انتشار دوره کلاس آموزشی دانشگاه Purdue
Machine Learning For Cyber Security

#یادگیری_ماشین #منابع #کلاس_آموزشی

🔰 @AI_Python
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
#معرفی سایت

تو این سایت می‌تونید یه کلمه یا collocation تو انگلیسی را سرچ کنید، و براتون توی روزنامه ها و سایتهای معروف میگرده و هر جا این عبارت استفاده شده را میاره،
یه کاربرد عالیش برای پیدا کرد مثالهای واقعی استفاده از یک اصطلاح یا لغته:

https://ludwig.guru/
👍6🔥4👏2
Forwarded from DLeX: AI Python (Meysam Asgari)
گروه DeepLearning and AI

https://t.me/DeepLearningAIExperts

گروه پردازش زبان طبیعی NLP:

https://t.me/NLPExperts

گروه زبانهای برنامه نویسی پایتون و لینوکس و...

https://t.me/PythonLinuxExperts

کانال گروه :
❇️ @AI_Python
3
دوره کلاسی جدید دانشگاه MIT
MIT Deep Learning for Art, Aesthetics, and Creativity

Generating photorealistic images and arts has been the highlight of AI in 2022.
Covering AI + creativity, GANs, diffusion models, etc.

Videos: https://youtube.com/playlist?list=PLCpMvp7ftsnIbNwRnQJbDNRqO6qiN3EyH

Website: https://ali-design.github.io/deepcreativity/

#منابع #فیلم #کلاس_آموزشی #یادگیری_عمیق
#DeepLearning

❇️ @AI_Python
👍7
Harvard CS109A #DataScience course materials — huge collection free & open!

1. Lecture notes
2. R code, #Python notebooks
3. Lab material
4. Advanced sections
and more ...

https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
👍6
Google engineers offered 28 actionable tests for #machinelearning systems. 👇

Introducing 👉 The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction (2017). 👈

If #ml #training is like compilation, then ML testing shall be applied to both #data and code.

7 model tests

1⃣ 👉 Review model specs and version-control it. It makes training auditable and improve reproducibility.

2⃣ 👉 Ensure model loss is correlated with user engagement.

3⃣ 👉 Tune all hyperparameters. Grid search, Bayesian method whatever you use, tune all of them.

4⃣ 👉 Measure the impact of model staleness. The age-versus-quality curve shows what amount of staleness is tolerable.

5⃣ 👉 Test against a simpler model regularly to confirm the benefit more sophisticated techniques.

6⃣ 👉 Check the model quality is good across different data segment, e.g. user countries, movie genre etc.

7⃣ 👉 Test model inclusion by checking against the protected dimensions or enrich under-represented categories.

7 data tests

1⃣ 👉 Capture feature expectations in schema using statistics from data + domain knowledge + expectations.

2⃣ 👉 Use beneficial features only, e.g. training a set of models each with one feature removed.

3⃣ 👉 Avoid costly features. Cost includes running time, RAM as well as upstream work and instability. 

4⃣ 👉 Adhere to feature requirements. If certain features can’t be used, enforce it programmatically.

5⃣ 👉 Set privacy controls. Budget enough time for new feature that depends on sensitive data.

6⃣ 👉 Add new features quickly. If conflicting with 5⃣ , privacy goes first.

7⃣ 👉 Test code for all input features. Bugs do exist in feature creation code.

See 7 Infrastructure & 7 monitoring tests in paper. 👇

They interviewed 36 teams across Google and found

👉 Using a checklist helps avoid mistakes (like a surgeon would do).

👉 Data dependencies leads to outsourcing responsibility. Other teams’ validation may not validate your use case.

👉 A good framework promotes integration test which is not well adopted.

👉 Assess the assessment to better assess your system.
https://research.google.com/pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
👍1
Forwarded from The Economics Papers
Media is too big
VIEW IN TELEGRAM
✔️ چرا اپل تنها یک شرکت تکنولوژی نیست؟

#business
#کسب‌وکار

@Theeconomicspapers
👍2
Forwarded from DLeX: AI Python (Farzad Heydary)
Media is too big
VIEW IN TELEGRAM
چالشها و چشم اندازهای هوش مصنوعی و یادگیری ماشین
❇️ @ai_python
Forwarded from DLeX: AI Python (Meysam Asgari)
This media is not supported in your browser
VIEW IN TELEGRAM
#هینتون : یک مثال عملی برای RNN
@ai_python
2
Why google Bert was ahead of it's time?

Because it was a masked language model even before COVID
😂😂😂😂😂

@ai_python
👏11👍2
کانال ما حامی بنیاد نیکوکاری نسیم مهربانی هست . علاقمندان به شرکت در این مهربانی در حدی که علاقه دارند کمک کنید
10👍2