انتشار دوره کلاس آموزشی دانشگاه Purdue
Machine Learning For Cyber Security
#یادگیری_ماشین #منابع #کلاس_آموزشی
🔰 @AI_Python
Machine Learning For Cyber Security
#یادگیری_ماشین #منابع #کلاس_آموزشی
🔰 @AI_Python
Natural Language Processing from Stanford University: Distilled Notes
👉🏼 http://nlp.aman.ai
#منابع
🔰 @AI_Python
👉🏼 http://nlp.aman.ai
#منابع
🔰 @AI_Python
aman.ai
Aman's AI Journal • CS224n: Natural Language Processing with Deep Learning
Aman's AI Journal | Course notes and learning material for Artificial Intelligence and Deep Learning Stanford classes.
Forwarded from The Economics Papers
YouTube
Capacity and Capacity Utilisation
This video provides an overview of the concept of capacity, capacity utilisation and some of the issues facing businesses operating at low or high utilisation.
#alevelbusiness #businessrevision #aqabusiness #tutor2ubusiness #alevels #edexcelbusiness #businessalevel…
#alevelbusiness #businessrevision #aqabusiness #tutor2ubusiness #alevels #edexcelbusiness #businessalevel…
The Complete Collection of Data Science Projects
https://www.kdnuggets.com/2022/08/complete-collection-data-science-projects-part-1.html
https://www.kdnuggets.com/2022/08/complete-collection-data-science-projects-part-1.html
KDnuggets
The Complete Collection of Data Science Projects – Part 1
The first part covers the list of Programming, Web scraping, Data Analytics, SQL, Business Intelligence, and Time Series projects.
🔥2
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
#معرفی سایت
تو این سایت میتونید یه کلمه یا collocation تو انگلیسی را سرچ کنید، و براتون توی روزنامه ها و سایتهای معروف میگرده و هر جا این عبارت استفاده شده را میاره،
یه کاربرد عالیش برای پیدا کرد مثالهای واقعی استفاده از یک اصطلاح یا لغته:
https://ludwig.guru/
تو این سایت میتونید یه کلمه یا collocation تو انگلیسی را سرچ کنید، و براتون توی روزنامه ها و سایتهای معروف میگرده و هر جا این عبارت استفاده شده را میاره،
یه کاربرد عالیش برای پیدا کرد مثالهای واقعی استفاده از یک اصطلاح یا لغته:
https://ludwig.guru/
👍6🔥4👏2
منابع رایگان شروع هوش مصنوعی
Artificial Intelligence for Beginners
https://github.com/microsoft/ai-for-beginners
MindMap
http://soshnikov.com/courses/ai-for-beginners/mindmap.html
Description
https://www.kdnuggets.com/2022/08/free-ai-beginners-course.html
#منابع #فیلم #هوش_مصنوعی #کلاس_آموزشی #کتاب
🔰 @AI_Python
Artificial Intelligence for Beginners
https://github.com/microsoft/ai-for-beginners
MindMap
http://soshnikov.com/courses/ai-for-beginners/mindmap.html
Description
https://www.kdnuggets.com/2022/08/free-ai-beginners-course.html
#منابع #فیلم #هوش_مصنوعی #کلاس_آموزشی #کتاب
🔰 @AI_Python
👍6❤4
Forwarded from DLeX: AI Python (Meysam Asgari)
گروه DeepLearning and AI
https://t.me/DeepLearningAIExperts
گروه پردازش زبان طبیعی NLP:
https://t.me/NLPExperts
گروه زبانهای برنامه نویسی پایتون و لینوکس و...
https://t.me/PythonLinuxExperts
کانال گروه :
❇️ @AI_Python
https://t.me/DeepLearningAIExperts
گروه پردازش زبان طبیعی NLP:
https://t.me/NLPExperts
گروه زبانهای برنامه نویسی پایتون و لینوکس و...
https://t.me/PythonLinuxExperts
کانال گروه :
❇️ @AI_Python
❤3
دوره کلاسی جدید دانشگاه MIT
MIT Deep Learning for Art, Aesthetics, and Creativity
Generating photorealistic images and arts has been the highlight of AI in 2022.
Covering AI + creativity, GANs, diffusion models, etc.
Videos: https://youtube.com/playlist?list=PLCpMvp7ftsnIbNwRnQJbDNRqO6qiN3EyH
Website: https://ali-design.github.io/deepcreativity/
#منابع #فیلم #کلاس_آموزشی #یادگیری_عمیق
#DeepLearning
❇️ @AI_Python
MIT Deep Learning for Art, Aesthetics, and Creativity
Generating photorealistic images and arts has been the highlight of AI in 2022.
Covering AI + creativity, GANs, diffusion models, etc.
Videos: https://youtube.com/playlist?list=PLCpMvp7ftsnIbNwRnQJbDNRqO6qiN3EyH
Website: https://ali-design.github.io/deepcreativity/
#منابع #فیلم #کلاس_آموزشی #یادگیری_عمیق
#DeepLearning
❇️ @AI_Python
👍7
Ghost-free High Dynamic Range Imaging with Context-aware Transformer
Github: https://github.com/megvii-research/hdr-transformer
Paper: https://arxiv.org/abs/2208.05114v1
Dataset: https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
Github: https://github.com/megvii-research/hdr-transformer
Paper: https://arxiv.org/abs/2208.05114v1
Dataset: https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
GitHub
GitHub - megvii-research/HDR-Transformer: The official MegEngine implementation of the ECCV 2022 paper: Ghost-free High Dynamic…
The official MegEngine implementation of the ECCV 2022 paper: Ghost-free High Dynamic Range Imaging with Context-aware Transformer - GitHub - megvii-research/HDR-Transformer: The official MegEngine...
Harvard CS109A #DataScience course materials — huge collection free & open!
1. Lecture notes
2. R code, #Python notebooks
3. Lab material
4. Advanced sections
and more ...
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
1. Lecture notes
2. R code, #Python notebooks
3. Lab material
4. Advanced sections
and more ...
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
👍6
Google engineers offered 28 actionable tests for #machinelearning systems. 👇
Introducing 👉 The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction (2017). 👈
If #ml #training is like compilation, then ML testing shall be applied to both #data and code.
7 model tests
1⃣ 👉 Review model specs and version-control it. It makes training auditable and improve reproducibility.
2⃣ 👉 Ensure model loss is correlated with user engagement.
3⃣ 👉 Tune all hyperparameters. Grid search, Bayesian method whatever you use, tune all of them.
4⃣ 👉 Measure the impact of model staleness. The age-versus-quality curve shows what amount of staleness is tolerable.
5⃣ 👉 Test against a simpler model regularly to confirm the benefit more sophisticated techniques.
6⃣ 👉 Check the model quality is good across different data segment, e.g. user countries, movie genre etc.
7⃣ 👉 Test model inclusion by checking against the protected dimensions or enrich under-represented categories.
7 data tests
1⃣ 👉 Capture feature expectations in schema using statistics from data + domain knowledge + expectations.
2⃣ 👉 Use beneficial features only, e.g. training a set of models each with one feature removed.
3⃣ 👉 Avoid costly features. Cost includes running time, RAM as well as upstream work and instability.
4⃣ 👉 Adhere to feature requirements. If certain features can’t be used, enforce it programmatically.
5⃣ 👉 Set privacy controls. Budget enough time for new feature that depends on sensitive data.
6⃣ 👉 Add new features quickly. If conflicting with 5⃣ , privacy goes first.
7⃣ 👉 Test code for all input features. Bugs do exist in feature creation code.
See 7 Infrastructure & 7 monitoring tests in paper. 👇
They interviewed 36 teams across Google and found
👉 Using a checklist helps avoid mistakes (like a surgeon would do).
👉 Data dependencies leads to outsourcing responsibility. Other teams’ validation may not validate your use case.
👉 A good framework promotes integration test which is not well adopted.
👉 Assess the assessment to better assess your system.
https://research.google.com/pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
Introducing 👉 The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction (2017). 👈
If #ml #training is like compilation, then ML testing shall be applied to both #data and code.
7 model tests
1⃣ 👉 Review model specs and version-control it. It makes training auditable and improve reproducibility.
2⃣ 👉 Ensure model loss is correlated with user engagement.
3⃣ 👉 Tune all hyperparameters. Grid search, Bayesian method whatever you use, tune all of them.
4⃣ 👉 Measure the impact of model staleness. The age-versus-quality curve shows what amount of staleness is tolerable.
5⃣ 👉 Test against a simpler model regularly to confirm the benefit more sophisticated techniques.
6⃣ 👉 Check the model quality is good across different data segment, e.g. user countries, movie genre etc.
7⃣ 👉 Test model inclusion by checking against the protected dimensions or enrich under-represented categories.
7 data tests
1⃣ 👉 Capture feature expectations in schema using statistics from data + domain knowledge + expectations.
2⃣ 👉 Use beneficial features only, e.g. training a set of models each with one feature removed.
3⃣ 👉 Avoid costly features. Cost includes running time, RAM as well as upstream work and instability.
4⃣ 👉 Adhere to feature requirements. If certain features can’t be used, enforce it programmatically.
5⃣ 👉 Set privacy controls. Budget enough time for new feature that depends on sensitive data.
6⃣ 👉 Add new features quickly. If conflicting with 5⃣ , privacy goes first.
7⃣ 👉 Test code for all input features. Bugs do exist in feature creation code.
See 7 Infrastructure & 7 monitoring tests in paper. 👇
They interviewed 36 teams across Google and found
👉 Using a checklist helps avoid mistakes (like a surgeon would do).
👉 Data dependencies leads to outsourcing responsibility. Other teams’ validation may not validate your use case.
👉 A good framework promotes integration test which is not well adopted.
👉 Assess the assessment to better assess your system.
https://research.google.com/pubs/archive/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
👍1
Forwarded from DLeX: AI Python (Farzad Heydary)
Media is too big
VIEW IN TELEGRAM
چالشها و چشم اندازهای هوش مصنوعی و یادگیری ماشین
❇️ @ai_python
❇️ @ai_python
Forwarded from DLeX: AI Python (Meysam Asgari)
This media is not supported in your browser
VIEW IN TELEGRAM
❤2
Forwarded from The Economics Papers
Harvard Business Review
The Real Secret to Retaining Talent
In today’s knowledge economy, employees with unique skills have a profound impact on organizations. It’s crucial to keep them happy. Many managers believe that compensation is the key (as the eye-popping rewards paid to employees in the upper echelon show).…
👍2
Why google Bert was ahead of it's time?
Because it was a masked language model even before COVID
😂😂😂😂😂
@ai_python
Because it was a masked language model even before COVID
😂😂😂😂😂
@ai_python
👏11👍2
10 Free Resources To Learn PyTorch In 2022
List of curated PyTorch resources:
1) PyTorch Official Tutorials.
2) Intro to Deep Learning with PyTorch by Facebook AI.
3) PyTorch Fundamentals By Microsoft
4) PyTorch - Python Deep Learning Neural Network API by Deeplizard.
5) Deep Neural Networks with PyTorch by Joseph Santarcangelo
6) PyTorch Basics for Machine Learning by IBM
7) Deep Learning with Python and PyTorch
8) Pytorch - Deep learning with Python by Harrison Kinsley, Sentdex
9) Make Your First GAN Using PyTorch
10) PyTorch Tutorials By Morvan Zhou
Bonus:
Deep Learning with PyTorch book📚
#فیلم #کلاس_آموزشی #هوش_مصنوعی #الگوریتمها
❇️ @AI_Python
List of curated PyTorch resources:
1) PyTorch Official Tutorials.
2) Intro to Deep Learning with PyTorch by Facebook AI.
3) PyTorch Fundamentals By Microsoft
4) PyTorch - Python Deep Learning Neural Network API by Deeplizard.
5) Deep Neural Networks with PyTorch by Joseph Santarcangelo
6) PyTorch Basics for Machine Learning by IBM
7) Deep Learning with Python and PyTorch
8) Pytorch - Deep learning with Python by Harrison Kinsley, Sentdex
9) Make Your First GAN Using PyTorch
10) PyTorch Tutorials By Morvan Zhou
Bonus:
Deep Learning with PyTorch book📚
#فیلم #کلاس_آموزشی #هوش_مصنوعی #الگوریتمها
❇️ @AI_Python
👍5🔥4