DLeX: AI Python
22.8K subscribers
4.95K photos
1.22K videos
765 files
4.3K links
هوش‌مصنوعی و برنامه‌نویسی

ارتباط با نوید داریا در توییتر :
https://twitter.com/NaviDDariya

اراتباط با لی لی علوی در تلگرام :
@lilylawww
Download Telegram
به زودی ریلیز خواهد شد:

Mastering Transformers: Build SOTA models from scratch with advanced natural language processing techniques

نویسندگان:
Savaş yıldırım
Meysam Asgari-chenaghlu

پی‌نوشت: می‌دونم طرح روی جلدش خیلی بده، احتمالا عوض میکنند قبل از چاپ. بهشون اطلاع دادیم.

https://www.amazon.com/Mastering-Transformers-advanced-processing-techniques/dp/1801077657

@ai_python
An article by Steve Lohr in today's Sunday New York Times about IBM Watson's lack of success affords us a chance to discuss how True AI (i.e. Mentifex AI) can pass a "second grade reading comprehension test" -- which is currently beyond the power of IBM Watson's "AI".

Suppose that a mentifex-class Strong AI Mind reads in a second-grade-level story, "A boy and a girl are in the kitchen. The girl puts a plate on the table. The boy pushes the plate off the table."

To test reading comprehension, we can expect questions and  answers such as the following.

Q. Where is the boy/girl/plate/table?

A. The boy/girl/plate/table is in the kitchen.

Q. Where is the plate?

A. The plate is off the table.

Q. Where is the kitchen?

A. I do not know.

The Mentifex AI Mind understands the situation of the story only in terms of the language being used, namely subject-verb-object (SVO) sentences and prepositional phrases. At first the AI knows that the plate is on the table, because the girl puts it there. Then the AI knows not exactly where the plate is, but only that it is "off the table" because of the act of "push" by the boy.

If there is no prior experience of the words involved, the AI does not understand each individual word, such as what a boy is or what a plate is. The AI makes a concept out of each word but with only a shallow conceptual knowledge. From the story alone, the AI understands each concept only in terms of the other concepts. Over time, the AI will develop deeper knowledge about each concept and about the world in general.

It seems a shame for IBM to spend so much time, money and talent on developing Watson only to see it fall into desuetude. Any entity wanting to go beyond Watson could look into the Mentifex AI mind-design and finally do Watson in the correct True AI way.

Mentifex (Arthur T. Murray)

http://ai.neocities.org/NLU.html -- Natural Language Understanding;
https://www.mail-archive.com/
سلام عزیزان مهربان
در نظر داریم برای عید قربان گوسفند تهیه و قربانی کنیم و گوشتش را بین نیازمندان پخش کنیم .

در این روزگار سخت همه که توانایی خرید گوسفند ندارند گفتیم نکند دل بچه یتیم یا نیازمندی به گوشت باشد.🙏

💳 6037997950135955
بنام مرکز نیکوکاری نسیم مهربانی

@nasimemehrabaniii
حکایت این روزهایمان ☺️
@ai_python
وضعیت قطعی اینترنت در آینده...😂😐

#فان
❇️ @AI_Python
ما برای ترجمه قواعد pep8 پایتون به فارسی یه سایت راه انداختیم و کار داره بصورت اوپن‌سورس انجام میشه، میخواستم ببینم اگه امکانش هست لطف کنین توی کانال یک اطلاع‌رسانی انجام بدین تا افراد بیشتری از جامعه پایتون‌کارها از پروژه مطلع بشن:

شیوه‌نامه نگارش پایتون:
آدرس سایت: https://pep8.ir

ارسالی از طرف کاربران: @hexadecimals
Skills you need in the industry as a Data Scientist (in no particular order):

1. Web Scraping
2. Querying databases - Different flavours of SQL
3. Understanding basics of data storage, warehouses and data pipelines
4. Exploratory Data Analysis
5. Data Visualization
6. Hypothesis testing - A/B testing specifically
7. Writing effectively and clearly about your projects, results, tech used etc.
8. Communicating results to stakeholders
9. Understanding the business problem
10. Understanding the business impact of your solutions
11. Creating an API
12. Deploying Docker containers/virtual environments
13. Creating a basic GUI - specially for internal products and projects without a pre-existing frontend
14. Documentation of every important step and detail in your projects
15. Data Modeling
16. Feature Engineering
17. Building ML models
18. Monitoring ML models in production
19. Abstracting code whenever required
20. Making your projects more maintainable - specially when they're in/going to production
21. Helping juniors/colleagues unblock on technical issues
22. Creating relevant metrics
23. Ensuring data validation
24. Using a version control system - usually Git these days
25. Reading and understanding new research
26. Knowing basics of Data Structures, Algorithms, Memory Management, Multiprocessing etc.
27. Translating Business problems into Data problems
28. Stakeholder expectation management within your team and external teams
29. Understanding REST, SOAP and the technology behind them
30. Building, running and interpreting surveys

Important note:
- Not all of the above skills are needed all of the time!
But different Data Scientist roles will have different weightage assigned to combinations of the above skills. And you don't need to be an absolute expert at each of these.
Recognise your strengths.

Get good at all of the above to some level and then keep improving that level in the areas that matter more in your current role.

#منابع #علم_داده

❇️ @AI_Python
خاورمیانه به اختصار
@ai_python
مقاله داغ روز
Generative Video Transformer: Can Objects be the Words?

https://arxiv.org/abs/2107.09240

#مقاله #پردازش_زبان_طبیعی #بینایی_کامپیوتر

❇️ @AI_Python
This media is not supported in your browser
VIEW IN TELEGRAM
بی اینترنت‌ها در عصر ارتباطات
@ai_python