Forwarded from NLP stuff
رهایی از دوراهی سخت؛ هم تنسورفلو، هم پایتورچ با IVY
تا به حال احتمالا با چالش سخت انتخاب بین تنسورفلو و پایتورچ مواجه شده باشید. اخیرا با اضافه شدن Jax هم این انتخاب سختتر شده. اما تیم unifyai یه فریمورک جدید به نام IVY معرفی کرده که یک syntax یکپارچه برای توسعه مدلهای دیپ داره و صرفا با تنظیم backend این پکیج روی هر یک از فریمورکهای تنسورفلو، پایتورچ و یا jax میتونید از عایدات همون ابزار بهرهمند بشید. البته این فریمورک در مسیر توسعه است و با توجه به عمر کوتاهش اما تعداد استار بسیار زیادی گرفته که نشون میده به نظر راه درستی رو داره میره.
لینک گیتهاب:
https://github.com/unifyai/ivy
#tool
@nlp_stuff
تا به حال احتمالا با چالش سخت انتخاب بین تنسورفلو و پایتورچ مواجه شده باشید. اخیرا با اضافه شدن Jax هم این انتخاب سختتر شده. اما تیم unifyai یه فریمورک جدید به نام IVY معرفی کرده که یک syntax یکپارچه برای توسعه مدلهای دیپ داره و صرفا با تنظیم backend این پکیج روی هر یک از فریمورکهای تنسورفلو، پایتورچ و یا jax میتونید از عایدات همون ابزار بهرهمند بشید. البته این فریمورک در مسیر توسعه است و با توجه به عمر کوتاهش اما تعداد استار بسیار زیادی گرفته که نشون میده به نظر راه درستی رو داره میره.
لینک گیتهاب:
https://github.com/unifyai/ivy
#tool
@nlp_stuff
Telegram
stuff
👍13👎2🔥2❤1😁1
Forwarded from DLeX: AI Python (Deleted Account)
Applying Unsupervised Learning.pdf
1.2 MB
✔️ یادگیری غیرنظارتی متناسب برای دانش آموزان و دانشجویان
🔸 چه موقع از الگوریتمهای کلاسترینگ استفاده کنیم ؟
▫️ تعاریف و کاربردهای یادگیری غیر نظارتی کجاست؟
🔸 برای بهبود مدلهای با بعد کاهشی و تکنیکها چی هستند؟
🔸 چه موقع از PCA استفاده میکنیم؟
🔸 و چه موقع از تحلیل فاکتوری استفاده میشود؟
#یادگیری_ماشین #منابع #یادگیری_غیرنظارتی #الگوریتمها #کتاب #فیلم #کلاس_آموزشی
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
🔸 چه موقع از الگوریتمهای کلاسترینگ استفاده کنیم ؟
▫️ تعاریف و کاربردهای یادگیری غیر نظارتی کجاست؟
🔸 برای بهبود مدلهای با بعد کاهشی و تکنیکها چی هستند؟
🔸 چه موقع از PCA استفاده میکنیم؟
🔸 و چه موقع از تحلیل فاکتوری استفاده میشود؟
#یادگیری_ماشین #منابع #یادگیری_غیرنظارتی #الگوریتمها #کتاب #فیلم #کلاس_آموزشی
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
👍4
Forwarded from DLeX: AI Python
Learn_Python_Visually.pdf
3.2 MB
DLeX: AI Python
https://adaptivetokensampling.github.io/
In conventional neural networks, the amount of computation used is proportional to the size of the inputs, instead of the complexity of the content of the data being processed. However, the time needed to process input data is a function of more than just the size of the inputs. Common input data for neural architectures also have an inherent complexity that is independent of the input size. Conventional neural architectures do not adjust their computational budget based on the complexity of the data they are processing, or arguably, such adaptation is done manually by the machine learning practitioner. In this work, we, therefore, introduce a differentiable parameter-free Adaptive Token Sampler (ATS) module, which can be plugged into any existing vision transformer architecture. ATS empowers vision transformers by scoring and adaptively sampling significant tokens. As a result, the number of tokens is not constant anymore and varies for each input image. By integrating ATS as an additional layer within the current transformer blocks, we can convert them into much more efficient vision transformers with an adaptive number of tokens. Since ATS is a parameter-free module, it can be added to the off the-shelf pre-trained vision transformers as a plug-and-play module, thus reducing their GFLOPs without any additional training. Moreover, due to its differentiable design, one can also train a vision transformer equipped with ATS. We evaluate the efficiency of our module in both image and video classification tasks by adding it to multiple SOTA vision transformers. Our proposed module improves the SOTA by reducing their computational costs (GFLOPs) by 2X.
👍2
Very interesting idea on how to move 'common sense' in AI forward. It is always great to explore different ideas and directions and have different perspectives to increase chances of success and advancement.
https://www.technologyreview.com/2022/06/24/1054817/yann-lecun-bold-new-vision-future-ai-deep-learning-meta/
#ai #ml #dl #artificialintelligence #machinelearning #deeplearning
https://www.technologyreview.com/2022/06/24/1054817/yann-lecun-bold-new-vision-future-ai-deep-learning-meta/
#ai #ml #dl #artificialintelligence #machinelearning #deeplearning
👍3
بهترین منابع ابزارهای هوش مصنوعی
The best Stanford, CMU, and MIT courses to build a career in AI
📚 Stanford University
🔹 CS229 - Machine Learning by Andrew Ng:
🔹 CS230 - Deep Learning by Andrew Ng
🔹 CS231n - Convolutional Neural Networks for Visual Recognition by Fei-Fei Li and Andrej Karpathy
🔹 CS224n - Natural Language Processing with Deep Learning by Christopher Manning
🔹 CS25 - Transformers United
📚 Massachusetts Institute of Technology
🔹 6.S191 - Introduction to Deep Learning by Alexander Amini and Ava Soleimany
🔹 6.S094 - Deep Learning by Lex Fridman
🔹 6.S192 - Deep Learning for Art, Aesthetics, and Creativity by Ali Jahanian
📚 Carnegie Mellon University
🔹 CS/LTI 11-777 Multimodal Machine Learning by Louis-Philippe Morency:
📚 University College London
🔹 COMP M050 Reinforcement Learning by David Silver
#فیلم #منابع #الگوریتمها #هوش_مصنوعی #پردازش_زبان_طبیعی #یادگیری_ماشین #یادگیری_عمیق #یادگیری_تقویتی
❇️ @AI_Python
The best Stanford, CMU, and MIT courses to build a career in AI
📚 Stanford University
🔹 CS229 - Machine Learning by Andrew Ng:
🔹 CS230 - Deep Learning by Andrew Ng
🔹 CS231n - Convolutional Neural Networks for Visual Recognition by Fei-Fei Li and Andrej Karpathy
🔹 CS224n - Natural Language Processing with Deep Learning by Christopher Manning
🔹 CS25 - Transformers United
📚 Massachusetts Institute of Technology
🔹 6.S191 - Introduction to Deep Learning by Alexander Amini and Ava Soleimany
🔹 6.S094 - Deep Learning by Lex Fridman
🔹 6.S192 - Deep Learning for Art, Aesthetics, and Creativity by Ali Jahanian
📚 Carnegie Mellon University
🔹 CS/LTI 11-777 Multimodal Machine Learning by Louis-Philippe Morency:
📚 University College London
🔹 COMP M050 Reinforcement Learning by David Silver
#فیلم #منابع #الگوریتمها #هوش_مصنوعی #پردازش_زبان_طبیعی #یادگیری_ماشین #یادگیری_عمیق #یادگیری_تقویتی
❇️ @AI_Python
👍9
Learning Protein Representations via Complete 3D Graph Networks
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
👍1
Deep Deformable 3D Caricature with Learned Shape Control (DD3C)
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
GitHub
GitHub - ycjungSubhuman/DeepDeformable3DCaricatures: [SIGGRAPH 2022] Official code for "Deep Deformable 3D Caricatures with Learned…
[SIGGRAPH 2022] Official code for "Deep Deformable 3D Caricatures with Learned Shape Control" - GitHub - ycjungSubhuman/DeepDeformable3DCaricatures: [SIGGRAPH 2022] Official code ...
👍1
Forwarded from مهندسی و علم داده
10 سایت برتر برای یافتن شغل در سال 2022:
(Top 10 sites for your career in 2022)
1) Linkedin
2) Indeed
3) Naukri
4) Monster
5) JobBait
6) Careercloud
7) Dice
8) CareerBuilder
9) Jibberjobber
10) Glassdoor
10 مهارت فنی مورد تقاضا در سال 2022:
(Top 10 Teach skills in demand in 2022)
1) Machine Learning
2) Mobile Development
3) SEO/SEM Marketing
4) Data Visualization
5) Data Engineering
6) UI/UX Design
7) Cyber Security
8) Cloud Computing/AWS
9) Blockchain
10) IOT
10 سایت برای آموزش آنلاین رایگان در سال 2022:
(Top 10 sites for free online education in 2022)
1) Coursera
2) edX
3) Khan Academy
4) Udemy
5) iTunesU Free Courses
6) MIT OpenCourseWare
7) Stanford Online
8) Codecademy
9) ict iitr
10) ict iitk
10 سایت برای بررسی رایگان رزومه در سال 2022:
(Top 10 sites to review your resume for free in 2022)
1) Zety Resume Builder
2) Resumonk
3) Resume dot com
4) VisualCV
5) Cvmaker
6) ResumUP
7) Resume Genius
8) Resume builder
9) Resume Baking
10) Enhance
10 سایت برای آماده سازی مصاحبه در سال 2022:
(Top 10 sites for interview Preparation in 2022)
1) Ambitionbox
2) AceThelnterview
3) Geeksforgeeks
4) Leetcode
5) Gainlo
6) Careercup
7) Codercareer
8) InterviewUp
9) InterviewBest
10) Indiabix
@BIMining
(Top 10 sites for your career in 2022)
1) Linkedin
2) Indeed
3) Naukri
4) Monster
5) JobBait
6) Careercloud
7) Dice
8) CareerBuilder
9) Jibberjobber
10) Glassdoor
10 مهارت فنی مورد تقاضا در سال 2022:
(Top 10 Teach skills in demand in 2022)
1) Machine Learning
2) Mobile Development
3) SEO/SEM Marketing
4) Data Visualization
5) Data Engineering
6) UI/UX Design
7) Cyber Security
8) Cloud Computing/AWS
9) Blockchain
10) IOT
10 سایت برای آموزش آنلاین رایگان در سال 2022:
(Top 10 sites for free online education in 2022)
1) Coursera
2) edX
3) Khan Academy
4) Udemy
5) iTunesU Free Courses
6) MIT OpenCourseWare
7) Stanford Online
8) Codecademy
9) ict iitr
10) ict iitk
10 سایت برای بررسی رایگان رزومه در سال 2022:
(Top 10 sites to review your resume for free in 2022)
1) Zety Resume Builder
2) Resumonk
3) Resume dot com
4) VisualCV
5) Cvmaker
6) ResumUP
7) Resume Genius
8) Resume builder
9) Resume Baking
10) Enhance
10 سایت برای آماده سازی مصاحبه در سال 2022:
(Top 10 sites for interview Preparation in 2022)
1) Ambitionbox
2) AceThelnterview
3) Geeksforgeeks
4) Leetcode
5) Gainlo
6) Careercup
7) Codercareer
8) InterviewUp
9) InterviewBest
10) Indiabix
@BIMining
👍38
Forwarded from DLeX: AI Python (Meysam Asgari)
Media is too big
VIEW IN TELEGRAM
چرا برنامه نویسی؟
* حتما ببینید و به دیگران نشان بدهید که چرا برنامه نویس هستید.
باتشکر از:@DaysGone
❇️ @ai_python
* حتما ببینید و به دیگران نشان بدهید که چرا برنامه نویس هستید.
باتشکر از:@DaysGone
❇️ @ai_python
👏6
ده ایده برتر در آمار که به انقلابی در هوش مصنوعی منجر شد
https://news.columbia.edu/news/top-10-ideas-statistics-ai
https://news.columbia.edu/news/top-10-ideas-statistics-ai
Columbia News
Top 10 Ideas in Statistics That Have Powered the AI Revolution
Andrew Gelman, a statistics professor at Columbia, and Aki Vehtari, a computer science professor at Finland’s Aalto University, recently published a list of the most important statistical ideas in the last 50 years. Here, they break it down in easy-to-understand…
👍5
Forwarded from DLeX: AI Python (Deleted Account)
How to Combine Neural Networks and Decision Trees.pdf
8.9 MB
❗️ مطلب داغ روز
مقایسه تفاوت « شبکه های عصبی و درخت تصمیم»
#NeuralNetworks #decisiontree
#شبکه_عصبی #درخت_تصمیم #آموزش #منابع
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
مقایسه تفاوت « شبکه های عصبی و درخت تصمیم»
#NeuralNetworks #decisiontree
#شبکه_عصبی #درخت_تصمیم #آموزش #منابع
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
Forwarded from DLeX: AI Python (Deleted Account)
How_To_Create_Your_first_ANN_Artificial.pdf
549.3 KB
چگونه اولین شبکه عصبی مصنوعی را در پایتون درست کنیم ؟؟
#مقاله #کتاب #آموزش #شبکه_عصبی_مصنوعی #منابع #فیلم #پایتون
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
#مقاله #کتاب #آموزش #شبکه_عصبی_مصنوعی #منابع #فیلم #پایتون
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
👍2
انتشار دوره کلاس آموزشی دانشگاه Purdue
Machine Learning For Cyber Security
#یادگیری_ماشین #منابع #کلاس_آموزشی
🔰 @AI_Python
Machine Learning For Cyber Security
#یادگیری_ماشین #منابع #کلاس_آموزشی
🔰 @AI_Python
Natural Language Processing from Stanford University: Distilled Notes
👉🏼 http://nlp.aman.ai
#منابع
🔰 @AI_Python
👉🏼 http://nlp.aman.ai
#منابع
🔰 @AI_Python
aman.ai
Aman's AI Journal • CS224n: Natural Language Processing with Deep Learning
Aman's AI Journal | Course notes and learning material for Artificial Intelligence and Deep Learning Stanford classes.
Forwarded from The Economics Papers
YouTube
Capacity and Capacity Utilisation
This video provides an overview of the concept of capacity, capacity utilisation and some of the issues facing businesses operating at low or high utilisation.
#alevelbusiness #businessrevision #aqabusiness #tutor2ubusiness #alevels #edexcelbusiness #businessalevel…
#alevelbusiness #businessrevision #aqabusiness #tutor2ubusiness #alevels #edexcelbusiness #businessalevel…