ICML 2022 - Graph Workshops
ICML starts today with the full week of tutorials, main talks, and workshops. While we are preparing a blog post about interesting graph papers, you can already check the contents of graph- and related workshops to be held on Friday and Saturday.
- Topology, Algebra, and Geometry in Machine Learning (TAG in ML)
- Knowledge Retrieval and Language Models (KRLM)
- Beyond Bayes: Paths Towards Universal Reasoning Systems
- Machine Learning in Computational Design
#مقاله
❇️ @AI_Python
ICML starts today with the full week of tutorials, main talks, and workshops. While we are preparing a blog post about interesting graph papers, you can already check the contents of graph- and related workshops to be held on Friday and Saturday.
- Topology, Algebra, and Geometry in Machine Learning (TAG in ML)
- Knowledge Retrieval and Language Models (KRLM)
- Beyond Bayes: Paths Towards Universal Reasoning Systems
- Machine Learning in Computational Design
#مقاله
❇️ @AI_Python
Forwarded from Learn With Mehdi
سلام سلام
ویدیوی جدید آماده شد و یک استراتژی واقعی رو با کمک دیتای بورس تهران و پایتون بررسی میکنیم.
توی این ویدیو با کمک یک استراتژی ساده یعنی میانگین متحرک ساده (SMA) یک برنامهمینویسیم که موقعیتهای خرید و فروش رو برامون مشخص میکنه و بازده تاریخی استراتژی رو در مقایسه با خرید و نگهداری اون سهم بهمون نشون میده:
در مورد سهامی که توی این ویدیو بررسی کردیم بازدهی خیلی خوبتری از بازار داشت!!!!
البته برای این استراتژی کارهای متفاوتی رو انجام دادیم:
- دریافت اطلاعات قیمتی سهام با کمک بسته بورس تهران
- پیادهسازی فیچرهای مورد نیاز برای استراتژی با کمک pandas
- مشخص کردن موقعیت خرید و فروش و محاسبه بازده سهام و استراتژی با کمک matplotlib
- ساخت یک تابع برای پیادهسازی استراتژی با پارامترها و سهام مختلف
این ویدیو رو میتونید از طریق لینک زیر تماشا کنید:
https://bit.ly/lwm-algo05-sma
————————————————-
لینک عضویت در کانال:
https://bit.ly/lwm-youtube
لینک گیتهاب پروژه الگوریتم تریدینگ:
https://github.com/ghodsizadeh/algo-trading-yt
لینک گیتهاب پروژه بورس تهران در پایتون:
https://github.com/ghodsizadeh/tehran-stocks
@learn_with_mehdi
ویدیوی جدید آماده شد و یک استراتژی واقعی رو با کمک دیتای بورس تهران و پایتون بررسی میکنیم.
توی این ویدیو با کمک یک استراتژی ساده یعنی میانگین متحرک ساده (SMA) یک برنامهمینویسیم که موقعیتهای خرید و فروش رو برامون مشخص میکنه و بازده تاریخی استراتژی رو در مقایسه با خرید و نگهداری اون سهم بهمون نشون میده:
- دریافت اطلاعات قیمتی سهام با کمک بسته بورس تهران
- پیادهسازی فیچرهای مورد نیاز برای استراتژی با کمک pandas
- مشخص کردن موقعیت خرید و فروش و محاسبه بازده سهام و استراتژی با کمک matplotlib
- ساخت یک تابع برای پیادهسازی استراتژی با پارامترها و سهام مختلف
این ویدیو رو میتونید از طریق لینک زیر تماشا کنید:
https://bit.ly/lwm-algo05-sma
————————————————-
لینک عضویت در کانال:
https://bit.ly/lwm-youtube
لینک گیتهاب پروژه الگوریتم تریدینگ:
https://github.com/ghodsizadeh/algo-trading-yt
لینک گیتهاب پروژه بورس تهران در پایتون:
https://github.com/ghodsizadeh/tehran-stocks
@learn_with_mehdi
YouTube
معاملات الگوریتمی در پایتون | الگوریتم SMA در بورس ایران | قسمت پنجم
در این قسمت بالاخره به صورت #الگوریتمتردینگ می شیم و. یکی از سادهترین و قدیمیترین الگوریتمها که باکمک میانگین متحرک ساده سیگنال خرید و فروش رو میده رو بررسی میکنم و نتیجه استراتژی رو با اینکه خود سهم رو میخریدیم مقایسه میکنیم.
spoiler:
بازدهی خیلی…
spoiler:
بازدهی خیلی…
Forwarded from NLP stuff
ارمغانی دیگر از قلمرو مولتیمودال! تولید تصاویر انسانی با استایلهای مختلف.
جذابیت مدلهای generative مخصوصا در حوزه تصویر داره میل به بینهایت میکنه. مدلهایی مثل deep fake قبلا خیلی گرد و خاک کردند. اخیرا مدلی بهنام Text2Human معرفی شده که با استفاده از جملات متنی یک استایل از انسان واقعی رو تولید میکنه. روش کارش به این صورته که شما در ورودی وضعیت بدنی (human pose) رو به صورت تصویر میدید (که هر تصویری میتونه باشه و خود دمو هم چندین مثال داره) و فرم لباس و بافت لباس مورد نظرتون رو به صورت جملات متنی میدید و مدل براتون تصاویر آدمهایی با همان ویژگی توصیفشده توسط شما رو تولید میکنه. شیوه کار کلی این مدل در دو گام اصلی خلاصه میشه. در گام اول یک تصویرخام از فرم بدن انسان (human pose)، تبدیل به یک قالب کلی انسان با یک لباس بدون بافت و شکل مشخص میشه (human parsing). سپس در گام دوم خروجی گام اول گرفته میشه و بافت و فرم لباس رو به تصویر گام قبل اضافه میکنه. نمای کلی مدل در تصویر زیر اومده. برای گام اول و تولید بردار بازنمایی قالب بدن انسان از جملات ورودی، از یک شبکه با چندین لایه fully connected استفاده میشه و این بردار بازنمایی به همراه تصویر خام به یک شبکه Auto Encoder داده میشه تا در خروجی یک قالب کلی از بدن انسان که فرم لباس در اون مشخصه ولی رنگ و بافت خاصی نداره رو خروجی بده. سپس برای گام دوم، خروجی تصویر گام اول به دو شبکه Auto Encoder همکار داده میشه که یکی مسوول بررسی ویژگیهای سطح بالای تصویر استایل انسان هست و دیگری به صورت ریزدانهتری فیچرها رو در نظر میگیره (فرض کنید در شبکه اول هر چند ده پیکسل مجاور هم تجمیع میشوند و به شبکه داده میشوند در حالیکه در شبکه دوم هر پیکسل یک درایه از بردار ورودی را تشکیل میدهد). از طرفی بازنمایی جملات نیز به این شبکهها داده میشود. سپس برای اینکه این دو شبکه همکاری داشته باشند خروجی دیکودر شبکه اول به ورودی دیکودر شبکه دوم داده میشه. یعنی شبکه دوم علاوه بر دریافت خروجی encoder خودش، خروجی دیکودر شبکه اول رو هم دریافت میکنه و بعد اقدام به بازسازی تصویر نهایی میکنه. معماری این قسمت رو هم در تصاویر میتونید ببینید. این مدل بر روی هاگینگفیس هم serve شده و میتونید دموش رو به صورت رایگان مشاهده کنید.
لینک مقاله:
https://arxiv.org/abs/2205.15996
لینک دمو:
https://huggingface.co/spaces/CVPR/Text2Human
لینک گیتهاب:
https://github.com/yumingj/Text2Human
#read
#paper
@nlp_stuff
جذابیت مدلهای generative مخصوصا در حوزه تصویر داره میل به بینهایت میکنه. مدلهایی مثل deep fake قبلا خیلی گرد و خاک کردند. اخیرا مدلی بهنام Text2Human معرفی شده که با استفاده از جملات متنی یک استایل از انسان واقعی رو تولید میکنه. روش کارش به این صورته که شما در ورودی وضعیت بدنی (human pose) رو به صورت تصویر میدید (که هر تصویری میتونه باشه و خود دمو هم چندین مثال داره) و فرم لباس و بافت لباس مورد نظرتون رو به صورت جملات متنی میدید و مدل براتون تصاویر آدمهایی با همان ویژگی توصیفشده توسط شما رو تولید میکنه. شیوه کار کلی این مدل در دو گام اصلی خلاصه میشه. در گام اول یک تصویرخام از فرم بدن انسان (human pose)، تبدیل به یک قالب کلی انسان با یک لباس بدون بافت و شکل مشخص میشه (human parsing). سپس در گام دوم خروجی گام اول گرفته میشه و بافت و فرم لباس رو به تصویر گام قبل اضافه میکنه. نمای کلی مدل در تصویر زیر اومده. برای گام اول و تولید بردار بازنمایی قالب بدن انسان از جملات ورودی، از یک شبکه با چندین لایه fully connected استفاده میشه و این بردار بازنمایی به همراه تصویر خام به یک شبکه Auto Encoder داده میشه تا در خروجی یک قالب کلی از بدن انسان که فرم لباس در اون مشخصه ولی رنگ و بافت خاصی نداره رو خروجی بده. سپس برای گام دوم، خروجی تصویر گام اول به دو شبکه Auto Encoder همکار داده میشه که یکی مسوول بررسی ویژگیهای سطح بالای تصویر استایل انسان هست و دیگری به صورت ریزدانهتری فیچرها رو در نظر میگیره (فرض کنید در شبکه اول هر چند ده پیکسل مجاور هم تجمیع میشوند و به شبکه داده میشوند در حالیکه در شبکه دوم هر پیکسل یک درایه از بردار ورودی را تشکیل میدهد). از طرفی بازنمایی جملات نیز به این شبکهها داده میشود. سپس برای اینکه این دو شبکه همکاری داشته باشند خروجی دیکودر شبکه اول به ورودی دیکودر شبکه دوم داده میشه. یعنی شبکه دوم علاوه بر دریافت خروجی encoder خودش، خروجی دیکودر شبکه اول رو هم دریافت میکنه و بعد اقدام به بازسازی تصویر نهایی میکنه. معماری این قسمت رو هم در تصاویر میتونید ببینید. این مدل بر روی هاگینگفیس هم serve شده و میتونید دموش رو به صورت رایگان مشاهده کنید.
لینک مقاله:
https://arxiv.org/abs/2205.15996
لینک دمو:
https://huggingface.co/spaces/CVPR/Text2Human
لینک گیتهاب:
https://github.com/yumingj/Text2Human
#read
#paper
@nlp_stuff
Telegram
stuff
Forwarded from Farzad 🦅
مهمترین مطالبی که پژوهشگران، دانشجویان و دانش آموزان برای آشنایی و شروع فعالیت در زمینه الگوریتمهای هوش مصنوعی بایستی فرابگیرند. با عضویت در کانال @ai_python جدیدترین و موضوعات روز را پیگیری کنید. با تشکر از همراهی سبزتان.
🔰 آموزش الگوریتمهای یادگیری ماشین
🔰 کورس رایگان در حوزه دیتاساینس و یادگیری ماشین و پردازش زبان طبیعی و یادگیر عمیق
🔰 یادگیری ماشین و NLP و پایتون
🔰 اسلاید سخنرانی ها در مورد یادگیری عمیق
🔰 شبکه های عصبی جفری هیتون
❎ کلاس یادگیری ماشین دانشگاه کلمبیا
❎ آموزش الگوریتمها NLP
❎ آموزش پایتون دکتر Chuck
❎ طریقه استفاده از الگوریتمهای ML
♻️ کلاس آموزشی RL
♻️ فیلم ML شرکت فیسبوک
♻️ فیلم های دکتر رضوی
♻️ آموزش عملی ANN در پایتون
♻️ چگونگی ساخت RNN در پایتون
🏧 نقشه راه ML
🏧 منابعی جامع از ML
🏧 16 منبع آموزشی الگوریتمهای AI
🏧 یادگیری تقویتی عمیق :تعاریف و تاریخچه
♨️ یادگیری ماشین برای مبتدیان
♨️ پاکسازی دیتاها در ML
♨️ ملزومات فراگیری برای الگوریتمهای یادگیری ماشین مزایا و کاراییها
♨️ فیلم کنفرانسهای مطرح هشتگ کنفرانس و مقاله سرچ کنید
♨️ آموزشی پیشرفته ای NLP در ژوپیتر
📣 یادگیری غیرنظارتی برای همه
📣 الگوریتمهای یادگیری ماشین :برآوردگرها ,تابع زیان
📣 یادگیری کورسهای fastai
📣 ریاضیات یادگیری عمیق شبکه های عصبی به زبان ساده
📣 آموزش CNN به زبان ساده
🔸 آموزش مقدماتی یادگیری ماشین برای همه سنین
🔸 آموزش ML بدون پیش زمینه ریاضیاتی
🔸 10 کتاب برای یادگیری ML هشتگ کتاب سرچ کنید
🔸 چگونه به وسیله الگوریتمهای یادگیری عمیق مسایل را حل کنیم ؟
🔸 خلاصه الگوریتمهای ML
🔸آموزشهای جامع از AI
✔️ آموزش درک زبان طبیعی دانشگاه استنفورد ۲۰۱۹
✔️ آموزش DataScience و آموزش
✔️ آموزش مقدماتی مدلهای GAN در پایتون
🔰 آموزش الگوریتمهای یادگیری ماشین
🔰 کورس رایگان در حوزه دیتاساینس و یادگیری ماشین و پردازش زبان طبیعی و یادگیر عمیق
🔰 یادگیری ماشین و NLP و پایتون
🔰 اسلاید سخنرانی ها در مورد یادگیری عمیق
🔰 شبکه های عصبی جفری هیتون
❎ کلاس یادگیری ماشین دانشگاه کلمبیا
❎ آموزش الگوریتمها NLP
❎ آموزش پایتون دکتر Chuck
❎ طریقه استفاده از الگوریتمهای ML
♻️ کلاس آموزشی RL
♻️ فیلم ML شرکت فیسبوک
♻️ فیلم های دکتر رضوی
♻️ آموزش عملی ANN در پایتون
♻️ چگونگی ساخت RNN در پایتون
🏧 نقشه راه ML
🏧 منابعی جامع از ML
🏧 16 منبع آموزشی الگوریتمهای AI
🏧 یادگیری تقویتی عمیق :تعاریف و تاریخچه
♨️ یادگیری ماشین برای مبتدیان
♨️ پاکسازی دیتاها در ML
♨️ ملزومات فراگیری برای الگوریتمهای یادگیری ماشین مزایا و کاراییها
♨️ فیلم کنفرانسهای مطرح هشتگ کنفرانس و مقاله سرچ کنید
♨️ آموزشی پیشرفته ای NLP در ژوپیتر
📣 یادگیری غیرنظارتی برای همه
📣 الگوریتمهای یادگیری ماشین :برآوردگرها ,تابع زیان
📣 یادگیری کورسهای fastai
📣 ریاضیات یادگیری عمیق شبکه های عصبی به زبان ساده
📣 آموزش CNN به زبان ساده
🔸 آموزش مقدماتی یادگیری ماشین برای همه سنین
🔸 آموزش ML بدون پیش زمینه ریاضیاتی
🔸 10 کتاب برای یادگیری ML هشتگ کتاب سرچ کنید
🔸 چگونه به وسیله الگوریتمهای یادگیری عمیق مسایل را حل کنیم ؟
🔸 خلاصه الگوریتمهای ML
🔸آموزشهای جامع از AI
✔️ آموزش درک زبان طبیعی دانشگاه استنفورد ۲۰۱۹
✔️ آموزش DataScience و آموزش
✔️ آموزش مقدماتی مدلهای GAN در پایتون
Forwarded from NLP stuff
رهایی از دوراهی سخت؛ هم تنسورفلو، هم پایتورچ با IVY
تا به حال احتمالا با چالش سخت انتخاب بین تنسورفلو و پایتورچ مواجه شده باشید. اخیرا با اضافه شدن Jax هم این انتخاب سختتر شده. اما تیم unifyai یه فریمورک جدید به نام IVY معرفی کرده که یک syntax یکپارچه برای توسعه مدلهای دیپ داره و صرفا با تنظیم backend این پکیج روی هر یک از فریمورکهای تنسورفلو، پایتورچ و یا jax میتونید از عایدات همون ابزار بهرهمند بشید. البته این فریمورک در مسیر توسعه است و با توجه به عمر کوتاهش اما تعداد استار بسیار زیادی گرفته که نشون میده به نظر راه درستی رو داره میره.
لینک گیتهاب:
https://github.com/unifyai/ivy
#tool
@nlp_stuff
تا به حال احتمالا با چالش سخت انتخاب بین تنسورفلو و پایتورچ مواجه شده باشید. اخیرا با اضافه شدن Jax هم این انتخاب سختتر شده. اما تیم unifyai یه فریمورک جدید به نام IVY معرفی کرده که یک syntax یکپارچه برای توسعه مدلهای دیپ داره و صرفا با تنظیم backend این پکیج روی هر یک از فریمورکهای تنسورفلو، پایتورچ و یا jax میتونید از عایدات همون ابزار بهرهمند بشید. البته این فریمورک در مسیر توسعه است و با توجه به عمر کوتاهش اما تعداد استار بسیار زیادی گرفته که نشون میده به نظر راه درستی رو داره میره.
لینک گیتهاب:
https://github.com/unifyai/ivy
#tool
@nlp_stuff
Telegram
stuff
Forwarded from DLeX: AI Python (Deleted Account)
Applying Unsupervised Learning.pdf
1.2 MB
✔️ یادگیری غیرنظارتی متناسب برای دانش آموزان و دانشجویان
🔸 چه موقع از الگوریتمهای کلاسترینگ استفاده کنیم ؟
▫️ تعاریف و کاربردهای یادگیری غیر نظارتی کجاست؟
🔸 برای بهبود مدلهای با بعد کاهشی و تکنیکها چی هستند؟
🔸 چه موقع از PCA استفاده میکنیم؟
🔸 و چه موقع از تحلیل فاکتوری استفاده میشود؟
#یادگیری_ماشین #منابع #یادگیری_غیرنظارتی #الگوریتمها #کتاب #فیلم #کلاس_آموزشی
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
🔸 چه موقع از الگوریتمهای کلاسترینگ استفاده کنیم ؟
▫️ تعاریف و کاربردهای یادگیری غیر نظارتی کجاست؟
🔸 برای بهبود مدلهای با بعد کاهشی و تکنیکها چی هستند؟
🔸 چه موقع از PCA استفاده میکنیم؟
🔸 و چه موقع از تحلیل فاکتوری استفاده میشود؟
#یادگیری_ماشین #منابع #یادگیری_غیرنظارتی #الگوریتمها #کتاب #فیلم #کلاس_آموزشی
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
DLeX: AI Python
https://adaptivetokensampling.github.io/
In conventional neural networks, the amount of computation used is proportional to the size of the inputs, instead of the complexity of the content of the data being processed. However, the time needed to process input data is a function of more than just the size of the inputs. Common input data for neural architectures also have an inherent complexity that is independent of the input size. Conventional neural architectures do not adjust their computational budget based on the complexity of the data they are processing, or arguably, such adaptation is done manually by the machine learning practitioner. In this work, we, therefore, introduce a differentiable parameter-free Adaptive Token Sampler (ATS) module, which can be plugged into any existing vision transformer architecture. ATS empowers vision transformers by scoring and adaptively sampling significant tokens. As a result, the number of tokens is not constant anymore and varies for each input image. By integrating ATS as an additional layer within the current transformer blocks, we can convert them into much more efficient vision transformers with an adaptive number of tokens. Since ATS is a parameter-free module, it can be added to the off the-shelf pre-trained vision transformers as a plug-and-play module, thus reducing their GFLOPs without any additional training. Moreover, due to its differentiable design, one can also train a vision transformer equipped with ATS. We evaluate the efficiency of our module in both image and video classification tasks by adding it to multiple SOTA vision transformers. Our proposed module improves the SOTA by reducing their computational costs (GFLOPs) by 2X.
Very interesting idea on how to move 'common sense' in AI forward. It is always great to explore different ideas and directions and have different perspectives to increase chances of success and advancement.
https://www.technologyreview.com/2022/06/24/1054817/yann-lecun-bold-new-vision-future-ai-deep-learning-meta/
#ai #ml #dl #artificialintelligence #machinelearning #deeplearning
https://www.technologyreview.com/2022/06/24/1054817/yann-lecun-bold-new-vision-future-ai-deep-learning-meta/
#ai #ml #dl #artificialintelligence #machinelearning #deeplearning
بهترین منابع ابزارهای هوش مصنوعی
The best Stanford, CMU, and MIT courses to build a career in AI
📚 Stanford University
🔹 CS229 - Machine Learning by Andrew Ng:
🔹 CS230 - Deep Learning by Andrew Ng
🔹 CS231n - Convolutional Neural Networks for Visual Recognition by Fei-Fei Li and Andrej Karpathy
🔹 CS224n - Natural Language Processing with Deep Learning by Christopher Manning
🔹 CS25 - Transformers United
📚 Massachusetts Institute of Technology
🔹 6.S191 - Introduction to Deep Learning by Alexander Amini and Ava Soleimany
🔹 6.S094 - Deep Learning by Lex Fridman
🔹 6.S192 - Deep Learning for Art, Aesthetics, and Creativity by Ali Jahanian
📚 Carnegie Mellon University
🔹 CS/LTI 11-777 Multimodal Machine Learning by Louis-Philippe Morency:
📚 University College London
🔹 COMP M050 Reinforcement Learning by David Silver
#فیلم #منابع #الگوریتمها #هوش_مصنوعی #پردازش_زبان_طبیعی #یادگیری_ماشین #یادگیری_عمیق #یادگیری_تقویتی
❇️ @AI_Python
The best Stanford, CMU, and MIT courses to build a career in AI
📚 Stanford University
🔹 CS229 - Machine Learning by Andrew Ng:
🔹 CS230 - Deep Learning by Andrew Ng
🔹 CS231n - Convolutional Neural Networks for Visual Recognition by Fei-Fei Li and Andrej Karpathy
🔹 CS224n - Natural Language Processing with Deep Learning by Christopher Manning
🔹 CS25 - Transformers United
📚 Massachusetts Institute of Technology
🔹 6.S191 - Introduction to Deep Learning by Alexander Amini and Ava Soleimany
🔹 6.S094 - Deep Learning by Lex Fridman
🔹 6.S192 - Deep Learning for Art, Aesthetics, and Creativity by Ali Jahanian
📚 Carnegie Mellon University
🔹 CS/LTI 11-777 Multimodal Machine Learning by Louis-Philippe Morency:
📚 University College London
🔹 COMP M050 Reinforcement Learning by David Silver
#فیلم #منابع #الگوریتمها #هوش_مصنوعی #پردازش_زبان_طبیعی #یادگیری_ماشین #یادگیری_عمیق #یادگیری_تقویتی
❇️ @AI_Python
Learning Protein Representations via Complete 3D Graph Networks
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
Deep Deformable 3D Caricature with Learned Shape Control (DD3C)
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
GitHub
GitHub - ycjungSubhuman/DeepDeformable3DCaricatures: [SIGGRAPH 2022] Official code for "Deep Deformable 3D Caricatures with Learned…
[SIGGRAPH 2022] Official code for "Deep Deformable 3D Caricatures with Learned Shape Control" - GitHub - ycjungSubhuman/DeepDeformable3DCaricatures: [SIGGRAPH 2022] Official code ...
Forwarded from مهندسی و علم داده
10 سایت برتر برای یافتن شغل در سال 2022:
(Top 10 sites for your career in 2022)
1) Linkedin
2) Indeed
3) Naukri
4) Monster
5) JobBait
6) Careercloud
7) Dice
8) CareerBuilder
9) Jibberjobber
10) Glassdoor
10 مهارت فنی مورد تقاضا در سال 2022:
(Top 10 Teach skills in demand in 2022)
1) Machine Learning
2) Mobile Development
3) SEO/SEM Marketing
4) Data Visualization
5) Data Engineering
6) UI/UX Design
7) Cyber Security
8) Cloud Computing/AWS
9) Blockchain
10) IOT
10 سایت برای آموزش آنلاین رایگان در سال 2022:
(Top 10 sites for free online education in 2022)
1) Coursera
2) edX
3) Khan Academy
4) Udemy
5) iTunesU Free Courses
6) MIT OpenCourseWare
7) Stanford Online
8) Codecademy
9) ict iitr
10) ict iitk
10 سایت برای بررسی رایگان رزومه در سال 2022:
(Top 10 sites to review your resume for free in 2022)
1) Zety Resume Builder
2) Resumonk
3) Resume dot com
4) VisualCV
5) Cvmaker
6) ResumUP
7) Resume Genius
8) Resume builder
9) Resume Baking
10) Enhance
10 سایت برای آماده سازی مصاحبه در سال 2022:
(Top 10 sites for interview Preparation in 2022)
1) Ambitionbox
2) AceThelnterview
3) Geeksforgeeks
4) Leetcode
5) Gainlo
6) Careercup
7) Codercareer
8) InterviewUp
9) InterviewBest
10) Indiabix
@BIMining
(Top 10 sites for your career in 2022)
1) Linkedin
2) Indeed
3) Naukri
4) Monster
5) JobBait
6) Careercloud
7) Dice
8) CareerBuilder
9) Jibberjobber
10) Glassdoor
10 مهارت فنی مورد تقاضا در سال 2022:
(Top 10 Teach skills in demand in 2022)
1) Machine Learning
2) Mobile Development
3) SEO/SEM Marketing
4) Data Visualization
5) Data Engineering
6) UI/UX Design
7) Cyber Security
8) Cloud Computing/AWS
9) Blockchain
10) IOT
10 سایت برای آموزش آنلاین رایگان در سال 2022:
(Top 10 sites for free online education in 2022)
1) Coursera
2) edX
3) Khan Academy
4) Udemy
5) iTunesU Free Courses
6) MIT OpenCourseWare
7) Stanford Online
8) Codecademy
9) ict iitr
10) ict iitk
10 سایت برای بررسی رایگان رزومه در سال 2022:
(Top 10 sites to review your resume for free in 2022)
1) Zety Resume Builder
2) Resumonk
3) Resume dot com
4) VisualCV
5) Cvmaker
6) ResumUP
7) Resume Genius
8) Resume builder
9) Resume Baking
10) Enhance
10 سایت برای آماده سازی مصاحبه در سال 2022:
(Top 10 sites for interview Preparation in 2022)
1) Ambitionbox
2) AceThelnterview
3) Geeksforgeeks
4) Leetcode
5) Gainlo
6) Careercup
7) Codercareer
8) InterviewUp
9) InterviewBest
10) Indiabix
@BIMining
Forwarded from DLeX: AI Python (Meysam Asgari)
Media is too big
VIEW IN TELEGRAM
چرا برنامه نویسی؟
* حتما ببینید و به دیگران نشان بدهید که چرا برنامه نویس هستید.
باتشکر از:@DaysGone
❇️ @ai_python
* حتما ببینید و به دیگران نشان بدهید که چرا برنامه نویس هستید.
باتشکر از:@DaysGone
❇️ @ai_python
ده ایده برتر در آمار که به انقلابی در هوش مصنوعی منجر شد
https://news.columbia.edu/news/top-10-ideas-statistics-ai
https://news.columbia.edu/news/top-10-ideas-statistics-ai
Columbia News
Top 10 Ideas in Statistics That Have Powered the AI Revolution
Andrew Gelman, a statistics professor at Columbia, and Aki Vehtari, a computer science professor at Finland’s Aalto University, recently published a list of the most important statistical ideas in the last 50 years. Here, they break it down in easy-to-understand…
Forwarded from DLeX: AI Python (Deleted Account)
How to Combine Neural Networks and Decision Trees.pdf
8.9 MB
❗️ مطلب داغ روز
مقایسه تفاوت « شبکه های عصبی و درخت تصمیم»
#NeuralNetworks #decisiontree
#شبکه_عصبی #درخت_تصمیم #آموزش #منابع
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
مقایسه تفاوت « شبکه های عصبی و درخت تصمیم»
#NeuralNetworks #decisiontree
#شبکه_عصبی #درخت_تصمیم #آموزش #منابع
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
Forwarded from DLeX: AI Python (Deleted Account)
How_To_Create_Your_first_ANN_Artificial.pdf
549.3 KB
چگونه اولین شبکه عصبی مصنوعی را در پایتون درست کنیم ؟؟
#مقاله #کتاب #آموزش #شبکه_عصبی_مصنوعی #منابع #فیلم #پایتون
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN
#مقاله #کتاب #آموزش #شبکه_عصبی_مصنوعی #منابع #فیلم #پایتون
❇️ @AI_Python
🗣 @AI_Python_arXiv
✴️ @AI_Python_EN