272K subscribers
3.94K photos
674 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🖥 Полезные заметки по устранению неполадок в AMD MI300X и других подобных устройствах

https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/amd/debug.md

А здесь большое руководству по устранению различных неполадок для NVIDIA https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/nvidia/debug.md

@ai_machinelearning_big_data

#amd #NVIDIA #Troubleshooting
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13👍105
🌟 Гайдбук по оценке больших языковых моделей от Hugging Face

Hugging Face выложила на Github руководство по оценке LLM.

В нем собраны различные способы оценки модели, руководства по разработке собственных оценок, а также советы и рекомендации из практического опыта. В руководстве рассказывается о разных способах оценки: с помощью автоматических тестов, людей или других моделей.

Особое внимание уделяется тому, как избежать проблем с инференсом модели и сделать результаты одинаковыми. В руководстве есть советы о том, как сделать данные чистыми, как использовать шаблоны для общения с LLM и как анализировать неожиданные плохие результаты.

Если вы ничего не знаете об оценке и бенчмарках, вам следует начать с разделов Basics в каждой главе, прежде чем погружаться глубже. В разделе базовые знания вы также найдете пояснения, которые помогут вам разобраться в важных темах LLM: например, как работает инференс модели и что такое токенизация.

Более прикладными разделы: советы и рекомендации, устранение неполадок и разделы, посвященные дизайну.

▶️Оглавление:

🟢Автоматические бенчмарки
🟢Оценка человеком
🟢LLM-судья
🟢Устранение неполадок
🟢Базовые знания

📌 Планы на будущие гайды:

🟠Описание автоматических метрик;
🟠Какие основные моменты вы всегда должны учитывать при построении задачи;
🟠Зачем нужна оценка LLM;
🟠Почему сравнивать модели между собой - это сложно.

🖥Github

@ai_machinelearning_big_data

#AI #ML #LLM #Huggingface #Guide
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥128🙉1