281K subscribers
3.95K photos
676 videos
17 files
4.54K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 PAR: метод параллелизации в генерации изображений и видео.

Авторегрессионное моделирование использует последовательный принцип "токен за токеном" с отличными результатами, но, с развитием качества генерации и размеров моделей, требует больших вычислительных ресурсов, замедляя процесс инференса.

Анализ зависимостей между токенами выявил закономерность, что токены, пространственно удаленные друг от друга, обладают более слабыми взаимосвязями. Так родилась теория о возможности их параллелизации, которая получила название PAR (Parallelized Autoregressive Visual Generation).

PAR предлагает разделение изображения на локальные сегменты, в которых начальные токены генерируются последовательно для формирования глобальной структуры. Затем выполняется параллельная генерация токенов в сегментах.

Такой подход дает ускорение процесса генерации изображений и видео в 3,6 раза при сохранении сопоставимого качества, и до 9,5 раз при минимальном снижении качества.

PAR может интегрироваться в стандартные архитектуры авторегрессионных моделей, не требуя их модификации, при этом используется механизм переупорядочивания токенов и набор обучаемых эмбеддингов, чтобы поддержать плавность перехода между последовательным и параллельным режимами генерации.

Эксперименты с PAR проводились на наборах ImageNet и UCF-101, с токенизаторами VQGAN и MAGVIT-v2. Качества итоговых изображений оценивалось метриками FID и IS, а для видео - метрикой FVD.

В результате, PAR с набором ImageNet показал сокращение количества шагов генерации в 3,9 раза и ускорение в 3,6 раза при сопоставимом уровне качества. В кейсе с более интенсивной параллелизацией количество шагов сократилось в 11,3 раза, а ускорение в 9,5 раз с минимальным снижением качества.

С датасетом UCF-101 PAR-4x (реализация с четырьмя параллельными токенами) показала ускорение в 3,8 раза при незначительном ухудшении качества, а PAR-16x (16 токенов) - в 12,6 раза, также при минимальных изменениях метрики FVD.

⚠️ Код проекта обещают опубликовать в ближайшее время.


🟡Страница проекта
🟡Arxiv
🖥GitHub (Coming soon)


@ai_machinelearning_big_data

#AI #ML #PAR #Parallelization
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2111🔥2