194K subscribers
3.56K photos
543 videos
17 files
4.3K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Ollama получила поддержку запуска моделей GGUF с Huggingface.

Ollama, приложение, основанное на llama.cpp, для локального взаимодействия с LLM получила возможность запускать одной командой любую GGUF модель, размещенную на Huggingface без создания нового Modelfile.

На сегодняшний день на HF около 45 тысяч моделей в формате GGUF, и теперь можно запустить любую из них одной командой ollama run. Также доступна настройка параметров запуска: выбор типа квантования и системного промпта.

▶️Быстрый запуск:

ollama run hf.co/{username}/{repository}


▶️Запуск с выбором типа квантования:

ollama run hf.co/{username}/{repository}:{quantization}


По умолчанию шаблон чата будет выбран автоматически из списка часто используемых шаблонов.

Он создается на основе встроенных метаданных tokenizer.chat_template, хранящихся в файле GGUF. Если в GGUF нет встроенного шаблона или необходимо настроить свой шаблон чата, нужно создать новый файл с именем template.

Шаблон должен быть шаблоном Go, а не шаблоном Jinja. Например:

{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>


📌 Список всех доступных параметров доступен в документации репозитория Ollama.

⚠️ В качестве доменного имени в команде запуска можно использовать доменные имена как hf.co, так и huggingface.co.


🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Ollama #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌Интерактивное руководство по Prompt Engineering для Ollama.

Репозиторий на Github c набором ipynb-туториалов по Prompt Engineering для освоения методов создания оптимальных промптов для модели Qwen2.5-14B.

Руководство разделено на 9 глав с практическими упражнениями и приложением с "продвинутыми" методами. В каждой главе есть "Example Playground" для экспериментов с примерами и наблюдения за изменениями в инференсе Ollama.

Руководство использует модель Qwen 2.5-14B, но все материалы подходят и для модели Qwen 2.5-7B.

▶️Содержание:

Начальный уровень

🟢Глава 1: Базовая структура промпта.
🟢Глава 2: Ясность и прямота.
🟢Глава 3: Назначение ролей.

Средний уровень

🟢Глава 4: Отделение данных от инструкций.
🟢Глава 5: Форматы данных инференса и речь для Ollama.
🟢Глава 6: Рассуждение (шаг за шагом).
🟢Глава 7: Использование примеров.

Продвинутый уровень

🟠Глава 8: Избегание галлюцинаций.
🟠Глава 9: Создание сложных промптов (примеры использования для реальных задач):

🟢Сложные промпты с нуля - чатбот;
🟢Сложные промпты с нуля по юридическим услугам;
🟢Упражнение: Сложные промпты для финансовых услуг;
🟢Упражнение: Сложные промпты для программирования.

Приложение: За пределами стандартных подсказок

🟠Цепочка промптов.
🟠Использование инструментов.


📌Лицензирование: MIT License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Github #Tutorial #Ollama
Please open Telegram to view this post
VIEW IN TELEGRAM