194K subscribers
3.56K photos
543 videos
17 files
4.3K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Test-Time Training RNN (ТТТ) - принципиально новый метод машинного обучения.

TTT - это метод, который позволяет моделям искусственного интеллекта адаптироваться и учиться непосредственно во время использования, а не только во время предварительного обучения.
Основное преимущество TTT заключается в том, что он может эффективно обрабатывать длинные контексты (большие объемы входных данных) без значительного увеличения вычислительных затрат.

Исследователи провели эксперименты на различных наборах данных, включая книги, и обнаружили, что TTT часто превосходит традиционные методы.
По сравнительным бенчмаркам с другими популярными методами машинного обучения, такими как трансформеры и рекуррентные нейронные сети, было обнаружено, что в некоторых задачах TTT работает лучше.

Этот революционный метод позволит приблизиться к созданию более гибких и эффективных моделей искусственного интеллекта, способных лучше адаптироваться к новым данным в реальном времени.

На Github опубликованы адаптации метода:

- адаптация под Pytorch
- адаптация под JAX

🟡Arxiv
🖥 GitHub for Pytorch [ Stars: 277 | Issues: 3 | Forks: 12 ]
🖥 GitHub for Jax [ Stars: 129 | Issues: 1 | Forks: 6 ]

@ai_machinelearning_big_data

#Pytorch #Jax #TTT #LLM #Training
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Параллельные стратегии с Jax: обучающий туториал.

Обучение LLM требует огромных вычислительных ресурсов. Поскольку размеры моделей исчисляются миллиардами параметров, специализированные методы распараллеливания необходимы для того, чтобы сделать обучение выполнимым.

В статье "Исследование параллельных стратегий с Jax" подробно рассматривается реализация некоторых стратегий масштабирования в Jax - фреймворке Python, предназначенном для высокопроизводительных численных вычислений с поддержкой ускорителей GPU и TPU.

Стратегии, описанные в туториале с примерами кода и иллюстрациями:

🟢Data Parallelism - распределение данных между несколькими устройствами, которые одновременно обучают модель;  

🟢Tensor Parallelism - распределение весов модели между устройствами, позволяет каждому устройству обрабатывать свою часть тензора параллельно; 

🟢Pipeline Parallelism разделяет модель на этапы, которые выполняются последовательно на разных устройствах; 

🟢Mixture-of-Experts использует множество специализированных экспертов для обработки различных частей входных данных, что позволяет масштабировать модель до огромных размеров.


▶️ Автор статьи - Александр Самарин, Lead ML Engineer в Huawei c 5-ти летнем опытом в глубоком обучении.


@ai_machinelearning_big_data

#AI #ML #LLM #JAX #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️🔥 Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX».

Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.

Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.

Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.

Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.

В этом руководстве содержится пошаговый гайд по реализации простой нейронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.

📌 Читать
📌Документация Jax

@ai_machinelearning_big_data


#jax #pytorch #google