TTT - это метод, который позволяет моделям искусственного интеллекта адаптироваться и учиться непосредственно во время использования, а не только во время предварительного обучения.
Основное преимущество TTT заключается в том, что он может эффективно обрабатывать длинные контексты (большие объемы входных данных) без значительного увеличения вычислительных затрат.
Исследователи провели эксперименты на различных наборах данных, включая книги, и обнаружили, что TTT часто превосходит традиционные методы.
По сравнительным бенчмаркам с другими популярными методами машинного обучения, такими как трансформеры и рекуррентные нейронные сети, было обнаружено, что в некоторых задачах TTT работает лучше.
Этот революционный метод позволит приблизиться к созданию более гибких и эффективных моделей искусственного интеллекта, способных лучше адаптироваться к новым данным в реальном времени.
На Github опубликованы адаптации метода:
- адаптация под Pytorch
- адаптация под JAX
@ai_machinelearning_big_data
#Pytorch #Jax #TTT #LLM #Training
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Обучение LLM требует огромных вычислительных ресурсов. Поскольку размеры моделей исчисляются миллиардами параметров, специализированные методы распараллеливания необходимы для того, чтобы сделать обучение выполнимым.
В статье "Исследование параллельных стратегий с Jax" подробно рассматривается реализация некоторых стратегий масштабирования в Jax - фреймворке Python, предназначенном для высокопроизводительных численных вычислений с поддержкой ускорителей GPU и TPU.
Стратегии, описанные в туториале с примерами кода и иллюстрациями:
@ai_machinelearning_big_data
#AI #ML #LLM #JAX #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️🔥 Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX».
Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.
Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.
Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.
Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.
В этом руководстве содержится пошаговый гайд по реализации простой нейронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.
📌 Читать
📌Документация Jax
@ai_machinelearning_big_data
#jax #pytorch #google
Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.
Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.
Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.
Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.
В этом руководстве содержится пошаговый гайд по реализации простой нейронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.
📌 Читать
📌Документация Jax
@ai_machinelearning_big_data
#jax #pytorch #google