194K subscribers
3.56K photos
543 videos
17 files
4.3K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
LISA: Reasoning Segmentation via Large Language Model

New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.

LISA раскрывает новые возможности сегментации мультимодальных LLM и позволяет решать сложные задачи рассуждения на знание реального мира.

🖥 Github: https://github.com/dvlab-research/lisa

📕 Paper: https://arxiv.org/abs/2308.00692v2

☑️ Dataset: https://github.com/dvlab-research/lisa#dataset

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 TrustLLM для оценивания ответов LLM

TrustLLM — инструмент на Python для комплексного исследования ответов от LLM.
TrustLLM рассматривает 6 аспектов ответов: правдивость, безопасность, этичность, соблюдение конфиденциальности и другие.

В этом документе подробно объясняется, как использовать инструмент для оценки эффективности собственных моделей.


pip install trustllm


GitHub
Arxiv
Docs
Project

#llm

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 ManiWAV:— обучение роботизированные системы аудио-визуальному самоконтролю.

Исследователи из Stanford и Сolambia University при поддержке Toyota Research Institute разработали метод аудиовизуального обучения роботизированных манипуляторов, который превосходит некоторые альтернативные подходы по контактным операциям и может быть применим к любой релевантной промышленной среде.
https://github.com/real-stanford/maniwav/blob/main/assets/audio_teaser.jpg?raw=true
Для самостоятельного тестирования и применения нужны:
- совместимость с Universal Manipulation Interface (UMI)
- установить микрофоны на целевой манипулятор (рекомендации + модель грипера с держателем)
- загрузить датасет и модель

Доступны режимы тренировки и тестирования ( под ссылками строки кода для выполнения команд)
Тренировка выполняется при помощи CUDA, рекомендованный GPU: NVIDIA GeForce RTX 3090 24 GB, но есть поддержка multi-GPU


🟡 Страница проекта ManiWAV
🟡 Paper
🟡Summary Video
🖥 GitHub

@ai_machinelearning_big_data
🌟 MiraData: крупный датасет видеоданных с большой продолжительностью и структурированными аннотациями.

При обучении генеративных моделей большую роль в качестве инференса готовых моделей играет датасет обучения.
Одним из неплохих источников может стать MiraData от Tencent — готовый датасет суммарной продолжительностью видео в 16 тысяч часов, предназначенный для обучения моделей генерации текста в видео. Он включает в себя длинные видеоролики (в среднем 72,1 секунды) с высокой интенсивностью движения и подробными структурированными аннотациями (в среднем 318 слов на ролик).

Для оценки качества датасета была даже специально создана система бенчмарков MiraBench из 17 метрик, оценивающих временную согласованность, движения в кадре, качество видео, и другие параметры. Согласно их результатам, MiroData превосходит другие известные датасеты, доступные в открытых источниках , которые в основном состоят из коротких видеороликов с плавающим качеством и короткими описаниями.

🟡Страница проекта
🟡Arxiv
🤗 Hugging Face
🖥 GitHub [ Stars: 241 | Issues: 4 | Forks: 7 ]

@ai_machinelearning_big_data

#Text2Video #Dataset #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 MINT-1T: мультимодальный датасет размером 1 триллионом токенов.

MINT-1T — это мультимодальный чередующийся набор данных с открытым исходным кодом, содержащий один триллион текстовых токенов и 3,4 миллиарда изображений.
Помимо этого, в него включены ранее неиспользованные источники: PDF-файлы и документы из ArXivOrg.

Состав и структура датасета :

🟢HTML-документы: 1029,4 миллиона шт.из дампов CommonCrawl WARC с 2017 по 2024 год;
🟢PDF-документы: 26,8 миллиона шт. из дампов CommonCrawl WAT за 2023-2024 годы;
🟢ArXiv-документы: 0,87 миллиона шт. были получены напрямую из S3-хранилищ ArXiv.

Процесс обработки длился более 6 месяцев, затрачено 4.2 млн процессорных часов и использовано порядка 2350 процессорных ядер вычислительной мощности.

Датасет был отфильтрован от документов низкого качества и дубликатов, очищен от персональных данных (e-mail, IP-адреса, другие идентификаторы), удален NSFW-контент.
Перед публикацией проведена дополнительная проверка фильтром качества текста из Huggingface Datatrove.
В этом команде разработки помогли инструменты:

🟠Детекция NSFW контента - https://github.com/GantMan/nsfw_model
🟠Определение языка - https://fasttext.cc/
🟠Фильтр качества текста - https://github.com/huggingface/datatrove
🟠Дедупликация - https://github.com/allenai/bff
🟠Парсинг PDF-файлов - https://github.com/pymupdf/PyMuPDF
🟠Парсинг HTML - https://github.com/huggingface/OBELICS

Эксперименты показали, что модели, обученные на MINT-1T, превосходят аналоги на существующих датасетах, особенно в задачах визуальных вопросов-ответов и обработки изображений.


📌Лицензирование : CC-BY-4.0


🟡Страница проекта
🟡Датасет на HF
🟡Arxiv
🖥Github [ Stars: 356 | Issues: 1 | Forks: 4]


@ai_machinelearning_big_data

#AI #Dataset #ML #MLLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 MedTrinity-25M: Огромный датасет снимков для медтеха.

Med Trinity-25M - крупномасштабный мультимодальный набор данных для медицины из более 25 миллионов изображений в 10 модальностях, с подробными аннотациями для более чем 65 заболеваний.
Аннотации содержат:
🟠тип заболевания;
🟠классификация патологии;
🟠описания для регионов и межрегиональные связи.
🟠подробные локальные аннотации для областей интереса (ROI), включая ограничивающие рамки и маски сегментации.

MedTrinity-25M подходит для мультимодальных задач: создание медицинских описаний патологий и новообразований, отчетов, задач классификации и сегментации. Этот набор данных может быть использован для подготовки медицинских моделей искусственного интеллекта.

Модели:

🟢LLaVA-Med++ (VQA-RAD). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора VQA-RAD), доработка на VQA-RAD;
🟢LLaVA-Med++ (SLAKE). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора SLAKE), доработка на SLAKE;
🟢LLaVA-Med++ (PathVQA). Претрейн на данных LLaVA-Med и MedTrinity-25M (в частности, на подмножестве обучающего набора PathVQA), доработка на PathVQA;
🟢LLaVA-Med-Captioner. Captioner для создания мультигранулярных аннотаций.

▶️Установка, запуск обучения и оценка на этом датасете:

# Clone repository
git clone https://github.com/UCSC-VLAA/MedTrinity-25M.git

# Install Package
conda create -n llava-med++ python=3.10 -y
conda activate llava-med++
pip install --upgrade pip # enable PEP 660 support
pip install -e .

# Install cases FOR TRAIN
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
pip install git+https://github.com/bfshi/scaling_on_scales.git
pip install multimedeval

# Pre-train 1 stage
cd MedTrinity-25M
bash ./scripts/med/llava3_med_stage1.sh

# Pre-train 2 stage
bash ./scripts/med/llava3_med_stage2.sh

# Finetune
cd MedTrinity-25M
bash ./scripts/med/llava3_med_finetune.sh

# Eval
cd MedTrinity-25M
bash ./scripts/med/llava3_med_eval_batch_vqa_rad.shs



🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥Github [ Stars: 118 | Issues: 0 | Forks: 8]


@ai_machinelearning_big_data

#AI #Dataset #MedTech #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 OpenMathInstruct-2: математический датасет и набор моделей от NVIDIA.

OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.

Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.

Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:

🟢формат решения имеет значение, причем чрезмерно подробные решения негативно сказываются на производительности модели;

🟢данные, сгенерированные сильной моделью-учителем, превосходят по качеству данные, полученные от более слабой модели;

🟢процесс обучения устойчив к наличию до 20% решений низкого качества;

🟢разнообразие вопросов имеет решающее значение для масштабирования данных.

Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера lm-sys и ручной проверки на поиск дубликатов с тестовыми наборами данных.

OpenMathInstruct-2 показал высокую эффективность при обучении LLM.

Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.

Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).

▶️ Модели, дообученные на этом датасете:

🟠OpenMath2-Llama3.1-70B, в формате Nemo, квантованные версии GGUF (от 3-bit до 8-bit);

🟠OpenMath2-Llama3.1-8B, в формате Nemo, квантованные версии GGUF (от 2-bit до 8-bit).


📌Лицензирование датасета : CC-BY-4.0 License.

📌Лицензирование моделей: Llama 3.1 Community License.


🟡Набор моделей
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 CogVideoX Factory: оптимизация файнтюна моделей генерации видео семейства CogVideoX.

CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.

Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".

Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:

🟢CPUOffloadOptimizer - перемещает обучаемые параметры и градиенты модели в CPU, освобождая память GPU для других операций;

🟢DeepSpeed Zero2 - распределяет параметры модели по нескольким GPU, что позволяет обучать большие модели, которые иначе не поместились бы в память одного GPU;

🟢LoRA - метод тонкой настройки, который изменяет только небольшое подмножество параметров модели, сохраняя при этом основную часть весов неизменной.

CogVideoX Factory предлагает сценарии обучения:

🟠LoRA для "text-to-video": cкрипт train_text_to_video_lora.sh;

🟠LoRA для "IMG-to-video": cкрипт train_image_to_video_lora.sh;

🟠SFT всей модели для "text-to-video": скрипт train_text_to_video_sft.sh.

⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт prepare_dataset.py играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.

CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.


📌Лицензирование : Apache 2.0 License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 SegVLAD: метод визуального распознавания мест.

SegVLAD - метод для решения задач визуального распознавания мест (VPR) в условиях значительных изменений ракурса. SegVLAD использует сегментацию изображений, разделяя их на значимые объекты ("вещи"). Вместо того, чтобы кодировать все изображение целиком, как это делают традиционные методы VPR, SegVLAD кодирует и ищет соответствия на уровне отдельных сегментов.

Основа архитектуры SegVLAD - набор перекрывающихся подграфов сегментов SuperSegments. Подграфы создаются путем расширения окрестности каждого сегмента, учитывая информацию о соседних сегментах, полученную с помощью триангуляции Делоне.

Для каждого SuperSegment вычисляется дескриптор с использованием метода VLAD (Vector of Locally Aggregated Descriptors).

VLAD агрегирует локальные дескрипторы пикселей, полученные с помощью предварительно обученного DINOv2, который способен извлекать высокоуровневые признаки, инвариантные к различным условиям съемки.

SegVLAD обучался на наборах данных, включающих как уличные, так и внутренние среды: Pitts30k, AmsterTime, Mapillary Street Level Sequences (MSLS), SF-XL, Revisted Oxford5K, Revisited Paris6k, Baidu Mall, 17Places, InsideOut и VPAir.

Тесты SegVLAD показали, что метод превосходит современные VPR, особенно на датасетах с большими изменениями точки обзора. SegVLAD является универсальным и может быть использован с различными методами сегментации изображений и кодировщиками признаков.

Проект программной реализации метода SegVLAD - Revisit Anything.

▶️Локальный запуск с набором данных 17 places из датасета AnyLock (~ 32GB) и моделями SAM+DINO:

⚠️ Перед запуском подготовьте данные датасета согласно структуре и укажите путь к данным в place_rec_global_config.py/

# Шаг1 - выбор метода (DINO/SAM):
python place_rec_SAM_DINO.py --dataset <> --method DINO/SAM

# Шаг2 - генерация VLAD cluster center (опционально):
python vlad_c_centers_pt_gen.py --dataset <>

# Шаг 3 - извлечение PCA:
place_rec_global_any_dataset_pca_extraction.py --dataset <> --experiment <> --vocab-vlad <domain/map>

# Шаг 4 - запуск SegVLAD:
place_rec_main.py --dataset <> --experiment <> --vocab-vlad <domain/map> --save_results <True/False>


📌Лицензирование : BSD-3-Clause license.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #SAM #DINO #VPR #SegVLAD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 LAION-DISCO-12M: большой датасет музыки с Youtube.

Набор данных LAION-DISCO-12M состоит из 12 млн ссылок на общедоступные треки YouTube с метаданными. Он собран для поддержки фундаментальных исследований в области машинного обучения, созданию базовых моделей обработки звука, извлечения музыкальной информации, анализа наборов данных аудио и обучение рекомендательных систем и приложений.

Метод создания LAION-DISCO-12M основан на рекурсивном поиске исполнителей на платформе YouTube Music. Начиная с начального списка исполнителей топ-чартов разных стран, новые артисты обнаруживались путем анализа раздела "Похожие исполнители".

Для каждого исполнителя извлекались метаданные: имя, количество подписчиков и список всех песен и музыкальных клипов. Каждая песня или музыкальный клип были связаны с URL-адресом YouTube.

Размер датасета составляет 250 516 исполнителей и 12 648 485 треков.

Поля метаданных:

🟢song_id - идентификатор трека;
🟢title - название;
🟢artist_names - имя исполнителя;
🟢artist_ids - идентификатор исполнителя;
🟢album_name - название альбома;
🟢album_id - идентификатор альбома;
🟢isExplicit - признак наличия ненормативной лексики;
🟢views - количество просмотров;
🟢duration - продолжительность трека.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #LAION #Audio #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 SmolTalk: синтетический англоязычный датасет для обучения LLM.

SmolTalk - это синтетический датасет, разработанный HuggingFace для обучения SmolTalk: новый синтетический набор данных для обучения больших языковых моделей LLM с учителем. Он состоит из 2 млн. строк и был использован для создания семейства моделей SmolLM2-Instruct. SmolTalk включает в себя как новые, так и существующие наборы данных.

Новые наборы данных:

🟢Smol-Magpie-Ultra (400 тыс. строк);
🟢Smol-constraints (36 тыс. строк);
🟢Smol-rewrite (50 тыс. строк);
🟢Smol-summarize (101 тыс. строк).

Существующие общедоступные наборы данных:

🟠OpenHermes2.5 (100 тыс. строк);
🟠MetaMathQA (50 тыс. строк);
🟠NuminaMath-CoT (1120 тыс. строк);
🟠Self-Oss-Starcoder2-Instruct (1120 тыс. строк);
🟠SystemChats2.0 (30 тыс. строк);
🟠LongAlign (примеры на английском языке с менее 16 тыс. токенов);
🟠Everyday-conversations (50 тыс. строк);
🟠APIGen-Function-Calling (80 тыс. строк);
🟠Explore-Instruct-Rewriting (30 тыс. строк).

SmolTalk сравнили недавно выпущенным набором данных Orca AgentInstruct 1M, обучив SmolLM2 на обоих наборах данных с использованием одинаковой конфигурации обучения.

Результаты показали, что SmolTalk показал значительные улучшения в производительности модели, особенно в задачах математики, программирования и следованию системным промптам. Наблюдались также значительные улучшения в масштабе 7B при обучении Mistral-7B на SmolTalk, особенно по показателям IFEval, BBH, GS8Mk и MATH.

▶️Загрузка датасета для трейна:

from datasets import load_dataset

ds = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
# to load the train split of a specific subset such as smol-magpie-ultra, you can do
ds = load_dataset("HuggingFaceTB/smoltalk", "smol-magpie-ultra", split="train")


📌Лицензирование: Apache 2.0 License.


🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #HuggingFace #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 The Well: Масштабная коллекция физических симуляций для машинного обучения.

The Well – коллекция датасетов для машинного обучения, содержащая 15 ТБ данных численного моделирования различных физических систем. Коллекция состоит из 16 наборов данных из областей: биологии, гидродинамики, акустики, магнитогидродинамики, внегалактических субстанций и взрывы сверхновых.

Данные представлены в унифицированном формате HDF5, организованном в соответствии с общей спецификацией. Они сгенерированы на равномерных сетках и дискретизированы с постоянным временным шагом.

Файлы HDF5 содержат все доступные переменные состояния и пространственно-изменяющиеся коэффициенты в виде массивов NumPy в формате одинарной точности fp32. Доступны скалярные, векторные и тензорные поля, учитывая их различные свойства преобразования.

Каждый файл данных случайным образом разделен на обучающую, тестовую и валидационную выборки в соотношении 8:1:1. Детальное описание каждого набора данных представлено в таблицах, где указаны координатная система, разрешение снимков, количество временных шагов в траектории, общее количество траекторий в наборе данных, размер набора данных, время выполнения симуляций и используемое оборудование.

The Well предоставляет класс the_well для Python, который позволяет загружать и использовать данные в процессе обучения моделей. Для удобства большинство наборов размещены на Hugging Face, что позволяет получать данные напрямую через интернет.

▶️ Установка и пример использования c HF:

# Create new venv
python -m venv path/to/env
source path/to/env/activate/bin

# Instal from repo
git clone https://github.com/PolymathicAI/the_well
cd the_well
pip install .

# Streaming from Hugging Face
from the_well.data import WellDataset
from torch.utils.data import DataLoader

trainset = WellDataset(
well_base_path="hf://datasets/polymathic-ai/",
well_dataset_name="active_matter",
well_split_name="train",
)
train_loader = DataLoader(trainset)

for batch in train_loader:
...


📌Лицензирование кода : BSD-3-Clause License.

📌Лицензирование датасетов : CC-BY-4.0 License.


🟡Страница проекта
🟡Коллекция на HF
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Dataset #TheWell
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Common Corpus: обновление большого набора данных.

Common Corpus - обширный открытый текстовый набор данных на 2 трлн. токенов. Набор разработан PleIAs в сотрудничестве с рядом партнёров и отличается от других датасетов высоким уровнем открытости и возможностью отслеживания происхождения данных.

В обновленную версию были включены материалы, не защищенные авторским правом или распространяемые на основе открытых лицензий.

Common Corpus содержит информацию объемом 10 млрд. токенов для каждого из 8 основных языков (английский, немецкий, французский, испанский, итальянский, польский, греческий и латынь) и 1 млрд. токенов для каждого из 33 дополнительных языка.

В состав Common Corpus входят научные публикации, правительственные и юридические документы, программный код и материалы культурного наследия - книги и газеты.

Все исходные данные для датасетов Common Corpus прошли тщательную модерацию, строгий отбор, коррекцию орфографических ошибок и удаление нежелательного или недостоверного контента.

Common Corpus соответствует положениям AI Act и предоставляет возможность обучения моделей, совместимых с принципами открытого ИИ и может быть использован в коммерческих и некоммерческих целях.

📌Набор данных структурирован в виде 6 коллекций:

🟢OpenCulture - материалы, находящиеся в общественном достоянии, архивные газетные публикации и ресурсы проектов Wikisource и Gutenberg (886 млрд. токенов);

🟢OpenGovernment - финансовая и юридическая документациия из SEC, WTO, Europarl и Caselaw Access Project (406 млрд. токенов);

🟢OpenSource - программный код из репозиториев GitHub, прошедший отбор с использованием системы ArmoRM (283 млрд. токенов);

🟢OpenScience - академические материалы из баз данных Open Alex и других открытых научных хранилищ (281 млрд токенов);

🟢OpenWeb - данные из Wikipedia, YouTube Commons и платформы Stack Exchange (73 млрд. токенов);

🟢Open Semantic - семантические данные из Wikidata, обработанные при участии Wikidata и Wikimedia Germany (67 млрд. токенов).

📌Каждый документ в Common Corpus сопровождается метаданными:

identifier - уникальный идентификатор текстового документа;
collection - название коллекции, к которой относится документ;
license - информация о лицензии;
date - дата создания документа;
title - заголовок документа;
creator - автор или источник публикации;
language - язык документа;
word_count, token_count - количественные показатели: число слов и токенов;
text - текстовое содержание документа.


@ai_machinelearning_big_data

#AI #ML #Dataset #PlelAs #CommonCorpus
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 Набор датасетов по программированию от HF.

HuggingFace, воодушевившись победой модели OlympicCoder над Sonnet 3.7 в бенчмарках LiveCodeBench и в заданиях Международной олимпиады по информатике 2024 года, опубликовал набор датасетов для предварительного обучения и тонкой настройки LLM в задачах генерации кода:

🟢Stack-Edu - 125 млрд. токенов образовательного кода на 15 языках программирования, отфильтрованных из The Stack v2

🟢GitHub Issues - 11 млрд. токенов из GitHub Issues

🟢Kaggle Notebooks - 2 млрд. токенов ноутбуков Kaggle по анализу данных

🟢CodeForces problems - 10 тыс. уникальных задач из сервиса CodeForces, 3 тыс из которых не были включены в массив обучения, использовавшийся DeepMind

🟢CodeForces problems DeepSeek-R1 - 8,69 Gb отфильтрованных трассировок рассуждений по задачам CodeForces

🟢International Olympiad in Informatics: Problem statements dataset (2020 - 2024) - уникальный набор из заданий Олимпиады по программированию, разбитый на подзадачи так, чтобы каждый запрос соответствовал решению этих подзадач

🟢International Olympiad in Informatics: Problem - DeepSeek-R1 CoT dataset (2020 - 2023) - 11 тыс трассировок рассуждений, выполненных DeepSeek-R1 в ходе решения заданий Олимпиады по программированию


@ai_machinelearning_big_data

#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 72B слишком много для VLM? А 7B параметров недостаточно!

QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.

Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.

Модель выдает более подробные и структурированный ответы.

💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.

📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.

🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.

Еще один крутой релиз понедельника!

🟢Блог: https://qwenlm.github.io/blog/qwen2.5-vl-32b/
🟢Попробовать: https://chat.qwen.ai
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
🟢Модель: https://modelscope.cn/models/Qwen/Qwen2.5-VL-32B-Instruct

@ai_machinelearning_big_data


#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 II-Thought-RL-v0: датасет для RL.

RL требует не только правильно настроенных алгоритмов, но и качественных данных. Многие существующие датасеты имеют проблемы в виде дублирования задач, низкого качества вопросов и недостаточную полноту охвата целевой специализации: в OpenR1 обнаружили 20 повторяющихся задач из Math-500, а General Reasoning содержит мусорные данные из-за обработке на краудсорсинге. Это мешает моделям учиться глубокому анализу, заставляя их «угадывать» ответы вместо логических рассуждений.

Intelligent Internet представили II-Thought-RL-v0 — датасет из 340 тысяч задач, созданный для решения этих проблем. Его ключевые принципы: масштаб, качество и чистота данных.

Каждый вопрос проходит многоступенчатую обработку: сначала удаляются дубликаты и загрязненные данные, затем Gemini 2.0 Flash и Qwen-2.5-32B фильтруют неоднозначные или некорректные задачи - отбраковываются вопросы с ошибками в формулировках, зависимостью от изображений или открытыми ответами.

Особенность датасета — акцент на верификацию. Математические задачи проверяются через Math-Verify, код запускается в изолированном окружении Sandbox Fusion, а для медицинских вопросов используется LLM-судья. Это снижает риск «взлома наград», когда модель начинает идти кратчайшим путем, а не решать задачи, рассуждая.

II-Thought-RL-v0 уже превзошел аналоги в тестах: модель с 1,5 млрд. параметров, обученная на этом датасете, обогнала DeepSeek-R1 на 3-5% в задачах AIME и LiveCodeBench.

Пока остается нерешенным вопрос дисбаланса сфер в наборе: 70% данных относятся к математике и программированию, а медицина, финансы и инженерия почти не представлены. В будущем создатели датасета планируют расширить его, чтобы модели учились рассуждать в реальных мультидисциплинарных сценариях.


🟡Статья
🟡Модель
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥OpenCodeReasoning: кодинга датасет от Nvidia

- 735 тыс. решений на Python для 28 тыс. уникальных задач программирования
- Крупнейший синтетический набор данных для генерации кода на основе рассуждений
- Сгенерирован моделью R1 от NVIDIA с полным набором шагов рассуждений
- Собран с 10 топовых платформ для кодинга.

https://huggingface.co/datasets/nvidia/OpenCodeReasoning

@ai_machinelearning_big_data

#dataset #nvidia
🌟 Математические датасет OpenMathReasoning и модели OpenMath-Nemotron - победители олимпиады AIMO-2.

NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.

Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).

Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.

OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.

Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.


📌Лицензирование: CC-BY-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Math #Dataset #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Исследователи Яндекса выложили в опенсорс датасет для RecSys почти на 5 млрд событий — YaMBDa

YaMBDa содержит 4,79 млрд событий – обезличенных взаимодействий пользователей в Яндекс Музыке и «Моей Волне». К ним относятся прослушивания, лайки/дизлайки, временные метки и некоторые характеристики треков. Важно, что все данные анонимизированы, датасет включает в себя только числовые идентификаторы. При этом датасет предназначен для тестирования алгоритмов для разных областей, а не только для стримингов.

Алгоритмы рекомендаций какое-то время оставались на плато, в том числе из-за ограниченного доступа к большим, реалистичным датасетам. Даже с появлением LLM и ускорением обучения иногда может все еще не хватать качественных публичных данных, особенно приближенных к продакшн-нагрузкам. Известные LFM-1B, LFM-2B и Music Listening Histories Dataset (27B) со временем стали недоступны из-за лицензионных ограничений. А рекорд по числу взаимодействий сейчас держит рекламный датасет от Criteo — около 4 млрд событий.

⚙️ Что внутри YaMBDa:
– 3 объёма данных: 50M, 500M и полный сет на 4,79B событий
– Эмбеддинги треков из аудио, полученные через CNN
– Метка is_organic: отличает органические действия в датасете от рекомендованных
– Формат Parquet с поддержкой Pandas, Polars (альтернатива Pandas) и Spark

🔗Доступно на HuggingFace

@ai_machinelearning_big_data

#dataset