Marco-o1 – LLM, файнтюн-версия Qwen2-7B-Instruct для решения сложных задач, требующих рассуждений. В создании модели использовались методики Chain-of-Thought (CoT), поиска по дереву Монте-Карло (MCTS) и уникальные стратегии регулирования действий при рассуждении.
Marco-o1 обучалась на 3 датасетах: отфильтрованный набор данных Open-O1 CoT, синтетический набор Marco-o1 CoT и собственный набор инструкций Marco.
В модели реализованы 2 стратегии действий: "шаг как действие" и "мини-шаг как действие" (32 или 64 токена соответственно). Мини-шаг как действие обеспечивает более детальное исследование пространства решений.
В Marco-o1 был внедрен механизм рефлексии, который побуждает модель переосмысливать свои рассуждения, что улучшает результаты инференса, особенно в сложных составных задачах.
Модель оценивалась на наборах данных MGSM (английский и китайский). Результаты показали, что Marco-o1 превосходит Qwen2-7B-Instruct и демонстрирует улучшение точности на 6,17% для английского набора данных и 5,60% для китайского. Модель превзошла Google Translate в задачах языкового перевода, особенно при переводе разговорных выражений.
В ближайших планах:
# Clone the repository
git clone https://github.com/AIDC-AI/Marco-o1
# Change to the Macaw-LLM directory
cd Marco-o1
# Install required packages
pip install -r requirements.txt
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("AIDC-AI/Marco-o1")
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Marco-o1")
# Run Inference
./src/talk_with_model.py
@ai_machinelearning_big_data
#AI #ML #LLM #CoT #Alibaba #MarcoO1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Релиз R1 и новости об инвестировании в развитие отрасли, вызвали падение акций американских ИТ-гигантов на бирже NASDAQ. Акции NVIDIA упали уже на 14% за сутки. Компания потеряла 465 млрд долларов и это антирекорд.
Но помимо R1 в этом месяце разработчики из Китая выпустили еще очень много интересных моделей 🔥 Китай набирает очень серьезные обороты,
Давайте посмотрим на список самых ярких релизов из Поднебесной за январь:
LLM:
✨ InternLM3-8B-Instruct
✨ MiniMax-Text-01
✨ RWKV-7 RNN + трансформер 👀
✨ Собственно сам DeepSeek-R1
✨ Baichuan-M1-14B медицинский LLM 🩺
✨ Qwen2.5-Math-PRM от Alibaba
✨ Qwen2.5 -1M
Модели кодинга:
✨ Tare от BytedanceTalk
TTS модели синтеза и генерации речи:
✨ T2A-01-HD от MiniMax AI
✨ LLaSA
МЛЛМ:
✨ Kimi k1.5 от Moonshot AI
✨ MiniCPM-o-2_6 от OpenBMB
✨ Sa2VA-4B от ByteDanceOSS
✨ VideoLLaMA 3 от Alibaba DAMO
✨ LLaVA-Mini от Китайской академии наук
✨Hunyuan-7B от TXhunyuan
✨ Hunyuan 3D 2.0
ИИ-агенты:
✨ UI-TARS от ByteDanceOSS
✨ GLM-PC
Датасеты:
✨ Fineweb-Edu-Chinese-V2.1
✨ Multimodal_textbook от Alibaba
✨ MME-Finance от Hithink AI
✨ GameFactory от KwaiVGI
@ai_machinelearning_big_data
#ai #ml #digest #china #deepseek #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Alibaba релизнули еще одну модель: Qwen2.5-Max.
- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo
@ai_machinelearning_big_data
#Qwen #ml #llm #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧍 LHM: новая модель Alibaba для генерации 3D из единственного изображения.
Этот ИИ может превратить ЛЮБОЕ изображение в полный рост в анимированных 3D-персонажей за считанные секунды.
🟢 Основные моменты работы модели:
Выделение признаков: Из входного изображения извлекаются токены, описывающие как общую структуру тела, так и детали лица (с помощью схемы многоуровневого кодирования для головы).
🟢 Мультимодальный трансформер: С помощью архитектуры трансформера происходит объединение 3D-геометрических токенов тела с визуальными токенами изображения. Механизм внимания позволяет сохранять геометрию одежды и текстурные детали.
🟢 Декодирование в 3D: После слияния токенов модель быстро (в режиме feed-forward) декодирует их в параметры 3D-гaуссового распределения, которые задают форму и внешний вид анимируемого 3D-аватара.
⚡️ Модель выдает очень приличные генерации, видео выглядит плавно и естественно, особенно анимация лица и рук.
Установка:
📌 Лицензирование: Apache 2.0 License.
🟡 Github
🟡 Проект
🟡 Демка (периодически отваливается из-за наплыва пользователей)
🟡 Статья
🟡 Видео
@ai_machinelearning_big_data
#ml #opensource #3dgenerator #Alibaba
Этот ИИ может превратить ЛЮБОЕ изображение в полный рост в анимированных 3D-персонажей за считанные секунды.
Выделение признаков: Из входного изображения извлекаются токены, описывающие как общую структуру тела, так и детали лица (с помощью схемы многоуровневого кодирования для головы).
Установка:
git clone git@github.com:aigc3d/LHM.git
cd LHM
@ai_machinelearning_big_data
#ml #opensource #3dgenerator #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
ZeroSearch — фреймворк на базе RL от Alibaba, который учит языковые модели искать данные, вообще не подключаясь к реальным поисковым системам.
Пайплайн ZeroSearch начинается с тонкой настройки (SFT): модель учат генерировать документы, похожие на вывод реального поисковика. Через промпты вида «создай пять полезных/мусорных документов» LLM осваивает 2 режима: релевантные ответы с правильными фактами и «мусор» с случайной информацией.
Дальше в дело вступает RL. Модель-агент взаимодействует с этим «виртуальным поисковиком»: сначала рассуждает в тегах <think>, затем генерирует поисковые запросы через <search>, а получив смоделированные документы, формирует окончательный ответ в <answer>.
Сквозь весь процесс происходит поэтапное усложнение. В начале тренировки 90% документов чистые, чтобы агент освоил базовую логику. С каждым шагом доля шума растет по специальной формуле: через 200 итераций вероятность получить бесполезный документ увеличивается вчетверо.
Это заставляет модель учиться фильтровать информацию даже в условиях хаоса. Чтобы избежать «смешивания» собственных выводов агента и сгенерированных документов, в градиентах маскируются токены чужих ответов — так фокус остается на улучшении стратегии поиска, а не на подгонке под шум.
На выходе получается автономный агент, который не просто ищет, но и учится когда искать, как формулировать запросы и что игнорировать. И все это без единого реального API, только симуляция и математика.
Итоги экспериментальных тестов выглядят позитивными. На датасете NQ ZeroSearch с моделью Qwen-2.5-7B-Instruct показала 43.24% точности (EM), оставляя позади Search-R1 с его 41.46%, хотя последний использует реальный Google. Для многосложных вопросов в HotpotQA разрыв еще заметнее: 29.21% против 34.55% у конкурента.
Но главное, 14B-версия модели превосходит живой поисковик по среднему показателю на 33.97% против 32.47% у Google. Интересно еще и то, как масштаб влияет на результат: 3B модель дает 33.97% точности, 7B — 38.61%, а 14B — уже 40.54%.
⚠️ В промпте к этим моделям необходимо добавить метки
[useful]
или [noisy]
. В инференсе модель возвращает 5 документов заданного типа.@ai_machinelearning_big_data
#AI #ML #LLM #ZeroSearch #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Что умеет Wan2.1-VACE:
💡 Эти возможности можно свободно комбинировать, выполняя сложные креативные задачи.
🔍 Ключевые особенности:
▪ SOTA-производительность: Wan2.1 стабильно превосходит существующие open-source модели и даже коммерческие решения уровня state-of-the-art в ряде бенчмарков.
▪ Работает на обычных видеокартах: Модель T2V-1.3B требует всего 8.19 ГБ видеопамяти, что делает её совместимой почти со всеми пользовательскими GPU. Например, на RTX 4090 она генерирует 5-секундное видео 480P примерно за 4 минуты (без оптимизаций, таких как квантизация). Её производительность сопоставима с некоторыми закрытыми моделями.
▪ Мультизадачность: Wan2.1 демонстрирует хорошие результаты в задачах текст-в-видео, изображение-в-видео, видеомонтаж, текст-в-изображение и видео-в-аудио, продвигая границы генерации видео..
▪ Модель способна выдавать 1080P в теории любой длины, при этом сохраняя временную структуру.
- Размер модели: 1.3B и 14B
- Лицензия: Apache-2.
@ai_machinelearning_big_data
#Alibaba #wan #videogeneration
Please open Telegram to view this post
VIEW IN TELEGRAM