Что это значит?
OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе
Oracle теперь главный поставщик чипов для OpenAI.
4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне города — только ради обучения ИИ.
@ai_machinelearning_big_data
#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤85🔥48🤔25👍15👀11🤬8🍓2👨💻2🥰1🤣1
Media is too big
VIEW IN TELEGRAM
CEO Anthropic Дарио Амодеи в служебной записке для сотрудников объявил о планах компании привлекать инвестиции из ОАЭ и Катара. Это серьезный разворот в их политике, ранее Anthropic отказывался от денег из Саудовской Аравии по соображениям нацбезопасности.
Амодеи признал, что это решение обогатит "диктаторов", но назвал доступ к огромному капиталу региона (по его оценкам, более $100 млрд) критически важным для сохранения лидерства в ИИ-гонке. Он сослался на то, что конкуренты уже активно сотрудничают с Ближним Востоком, ставя Anthropic в невыгодное положение.
Глава компании подчеркнул, что речь идет о чисто финансовых вложениях без передачи контроля, однако признал риск "мягкой силы" со стороны инвесторов. Он также приготовил сотрудников к критике в СМИ, назвав обвинения в лицемерии неизбежными.
wired.com
Усовершенствованная версия Gemini с технологией Deep Think успешно решила 5 из 6 сложнейших задач на IMO, набрав 35 баллов и показав результат, соответствующий золотой медали. Модель работала полностью в естественном языке, самостоятельно генерируя математические доказательства из текстового описания задач, уложившись в рамки стандартного 4.5-часового лимита олимпиады.
Для сравнения, в прошлом году системам AlphaGeometry и AlphaProof требовалась помощь экспертов для перевода задач на формальные языки и несколько дней вычислений. Такого результата удалось достичь благодаря режиму Deep Think, который позволяет модели одновременно исследовать несколько путей решения, а также дообучению на массиве математических задач и решений.
deepmind.google
Microsoft активно нанимает ведущих инженеров и исследователей из Google DeepMind, усиливая свои позиции в гонке за таланты. Последним заметным переходом стал Амар Субраманья, бывший глава разработки чат-бота Gemini, который занял пост вице-президента по ИИ в Microsoft. За последние полгода к нему присоединились еще как минимум 23 бывших сотрудника DeepMind.
Ключевую роль в этой охоте за головами играет Мустафа Сулейман, сооснователь DeepMind, который теперь возглавляет потребительское ИИ-направление в Microsoft. Он активно привлекает своих бывших коллег для создания новых продуктов. В Google признают отток, но утверждают, что их текучесть кадров ниже средней по отрасли.
ft.com
Новая возможность позволяет анализировать и выделять объекты на изображениях с помощью запросов на естественном языке. Эта функция выходит за рамки традиционных методов, способных распознавать только фиксированные категории, например, "собака" или "машина".
C диалоговой сегментацией модель может выделить "человека с зонтом", "всех, кто не сидит" или даже такие понятия, как "беспорядок" и "повреждения", у которых нет четких визуальных контуров. Функция также распознает текст на изображениях и поддерживает многоязычные запросы. Доступ к функции открыт через Gemini API, а попробовать ее можно в Google AI Studio или Google Colab.
developers.googleblog.com
OpenAI раскрыла статистику использования своего флагманского продукта: каждый день пользователи по всему миру отправляют в ChatGPT 2.5 миллиарда запросов, из которых около 330 миллионов приходятся на США. Еще в декабре прошлого года Сэм Альтман говорил о миллиарде запросов в день, что означает более чем двукратное увеличение за 8 месяцев.
Для сравнения, Google, по разным оценкам, обрабатывает от 14 до 16.4 миллиардов поисковых запросов в день. Хотя ChatGPT пока уступает гиганту поиска по абсолютным цифрам, темпы его роста наглядно показывают, насколько быстро ИИ становится неотъемлемой частью повседневной цифровой жизни.
techcrunch.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤50👍27🔥13😁3👀2
Forwarded from Анализ данных (Data analysis)
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов
📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков
🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)
💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code
Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.
#qwen #ml #ai #llm #Alibaba
@data_analysis_ml
👍82🔥22❤16👨💻2
Архитектура Mixture-of-Recursions (MoR), предложенная Google в соавторстве с KAIST AI объединяет в едином фреймворке традиционные подходы разделения параметров и адаптивные вычисления, заставляя модель думать над каждым токеном с разной глубиной.
Под капотом MoR - рекурсивный трансформер, который прогоняет входные данные через один и тот же блок слоев несколько раз. Но главная фишка в том, что количество этих прогонов, или глубина рекурсии, не фиксированное, а динамическое и определяется для каждого токена индивидуально.
Легковесный обучаемый роутер анализирует токен и решает, сколько вычислительных усилий на него потратить. Простые слова могут пройти всего один цикл рекурсии, в то время как семантически нагруженные термины отправятся на более глубокую обработку из нескольких циклов.
Это дает два главных преимущества:
При одинаковом бюджете на обучение (в FLOPs) и меньшем размере самой модели MoR показывает более низкую перплексию и лучшие результаты в few-shot задачах, чем стандартные и рекурсивные аналоги.
@ai_machinelearning_big_data
#AI #ML #LLM #Architecture #MoR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍91❤46🔥24🥰7👌4😁2👨💻1
Media is too big
VIEW IN TELEGRAM
OpenAI объявила, что ее следующая конференция для разработчиков, DevDay, состоится 6 октября 2025 года в Сан-Франциско. На мероприятии выступят Сэм Альтман и Грэг Брокман. DevDay традиционно становится площадкой для главных анонсов OpenAI, и в этом году разработчикам обещают ранний доступ к информации о будущих продуктах и технологиях.
Конференция планирует собрать более 1500 разработчиков. Регистрация на очное участие открыта в формате подачи заявок до 30 июля, а приглашения будут разосланы в середине августа. Стоимость участия составит 650 долларов. Для тех, кто не сможет присутствовать лично, будет организована прямая трансляция основной части мероприятия, а записи остальных сессий опубликуют позже.
openai.com
Швейцарская компания Proton, известная своим одноименным почтовым сервисом, выпустила автономного ИИ-ассистента Lumo. Чат-бот позиционируется как безопасная альтернатива продуктам от крупных технологических корпораций.
Lumo умеет обобщать документы, писать код, составлять черновики писем и отвечать на веб-запросы. Сервис работает исключительно на открытых языковых моделях, размещенных в собственных дата-центрах Proton в Европе. Вся переписка защищена сквозным шифрованием с "нулевым доступом", что не позволяет самой компании или третьим лицам читать и хранить сообщения.
Попробовать Lumo можно без регистрации через веб-клиент или мобильные приложения, но с ограничениями. Платная подписка Lumo Plus за $12.99 в месяц снимает лимиты на общение и позволяет загружать файлы большего размера.
proton.me
Google DeepMind выпустила Aeneas, опенсорсный инструмент на базе ИИ, предназначенный для помощи историкам в работе с фрагментарными древними надписями. Система анализирует неполные транскрипции и изображения, после чего определяет вероятное место и дату происхождения текста, предлагает варианты недостающих слов и находит аналоги в корпусе известных надписей.
Модель, обученная на 200 000 каталогизированных текстов, является развитием более ранней системы Ithaca для греческого языка. В исследовании, опубликованном в Nature, Aeneas улучшил генерацию научных гипотез в 90% случаев, а его оценки происхождения и датировки совпали с консенсусом ученых.
Aeneas доступна бесплатно для ученых, преподавателей и сотрудников музеев.
theguardian.com
Amazon Web Services объявила о закрытии своей исследовательской ИИ-лаборатории в Шанхае. В компании это решение назвали трудным, оно завершает семилетнюю историю работы центра, который занимался передовыми разработками в области машинного обучения. По словам одного из научных сотрудников, подразделение расформировывают из-за "стратегических корректировок на фоне напряженности между США и Китаем".
Лаборатория, открытая в 2018 году, была весьма продуктивной: на ее счету более 100 научных публикаций и создание популярной open-source библиотеки Deep Graph Library. В лучшие времена в ней работало более 1000 человек.
ft.com
Устройство, разработанное в Reality Labs представляет собой браслет, который считывает электрическую активность мышц предплечья (sEMG), напрямую декодируя двигательные намерения пользователя.
Главное достижение - разработка универсальной модели, обученной на данных тысяч людей. В отличие от аналогов, требующих длительной настройки под каждого человека, эта система работает из коробки, без предварительной калибровки под новых пользователей.
В тестах интерфейс продемонстрировал распознавание рукописного ввода со скоростью почти 21 слово в минуту, точное определение дискретных жестов (щипки, свайпы) и плавное управление курсором. При этом короткая персональная донастройка на данных конкретного пользователя может повысить точность еще на 16%.
nature.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤62👍39🔥9👏4🥰3👌3✍2💯1
Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:
Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.
Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:
Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.
Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .
На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.
На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.
@ai_machinelearning_big_data
#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍77❤53🔥37🤔7👀6🥰3🐳2
🧠 Qwen3-MT — Alibaba продолжает жечь и выпускает еще одну модель, в этот раз для машинного перевода.
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
🟡 Попробовать демку: https://huggingface.co/spaces/Qwen/Qwen3-MT-Demo
🟡 ModelScope: https://modelscope.cn/studios/Qwen/Qwen3-MT-demo
🟡 Документация API: https://alibabacloud.com/help/en/model-studio/translation-abilities
🟡 Блог с подробностями: https://qwenlm.github.io/blog/qwen-mt/
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
🌍 Поддерживает 92+ языка, на которых говорит 95% населения мира
📚 Обучен на триллионах токенов из интернета, открытых документов и книгах, субтитров из видео.
🔬 Что внутри:
- Модель Qwen3-MoE-72B с архитектурой Mixture-of-Experts
- Заточена на переводческие фишки, поддерживает сложную терминологию и даже очень редкие слова.
- RLHF: обучение с подкреплением повышает точность и естественность модели
Возможности:
✅ Обеспечивает качественный перевод в реальном времени
✅ Контроль стиля и терминов
✅ Масштабируемость для API и продакшена
✅ Цена — от $0.5 за миллион токенов
@ai_machinelearning_big_data
#Qwen #Alibaba #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍124❤32🔥23🥰5🎃4
Media is too big
VIEW IN TELEGRAM
Ключевым нововведением станет интеграция возможностей «o-серии», ориентированных на сложные логические рассуждения, в основную линейку GPT. Ожидается, что модель выйдет в нескольких вариантах: основная, «mini» и «nano». Полноразмерная и мини-версии будут доступны через ChatGPT и API, а нано-версия - только по API.
Сэм Альтман подтвердил, что уже тестирует GPT-5, описав ее как "умнее нас почти во всех отношениях", хотя и признал, что она вряд ли достигнет порога AGI на старте.
Релизу будет предшествовать выпуск открытой модели, похожей на o3-mini, до конца июля.
Запуск GPT-5 может быть отложен из-за проблем с безопасностью или мощностями, но инженеры Microsoft уже готовят дополнительные серверные ресурсы.
theverge.com
Президент США обнародовал "План действий в области ИИ" и подписал указы, направленные на ускорение строительства дата-центров и сворачивание федерального надзора. Документ содержит более 90 рекомендаций, включая упрощение разрешений для проектов мощностью свыше 100 МВт и использование федеральных земель и налоговых льгот для поддержки новых ЦОД и полупроводниковых производств.
В области торговли план предписывает продвигать экспорт американских ИИ-систем в союзные страны, но сохранять запрет на поставки передовых чипов противникам (Китай). Кроме того, Белый дом требует от федеральных ведомств использовать только "идеологически нейтральные" ИИ-модели и предупреждает штаты о возможном удержании финансирования за обременительные правила.
wsj.com
Google добавила в сервис Google Photos два новых творческих ИИ-инструмента - Photo to Video и Remix. Функция Photo to Video, работает на базе Veo 2 и позволяет оживлять статичные фотографии, превращая их в шестисекундные видеоролики с небольшой динамикой. Пользователи могут выбрать один из двух пресетов: "Subtle movements" или "Мне повезет!".
Remix стилизует фотографии под аниме, комиксы, наброски или 3D-анимацию. Оба нововведения располагаются в новой вкладке "Create", которая объединит все творческие функции приложения в одном месте.
Новые функции начнут поэтапно развертываться для пользователей в США в ближайшие несколько недель.
blog.google
Исследование, проведенное FutureHouse, выявило серьезные проблемы с достоверностью Humanity’s Last Exam (HLE) - одного из сложнейших бенчмарков для оценки возможностей ИИ-моделей. Анализ показал, что около 29% ответов в разделах по химии и биологии напрямую противоречат рецензируемой научной литературе.
Причиной такого высокого уровня ошибок называют саму методологию создания HLE. Целью было составить вопросы, на которые современные модели не могут дать ответ, что привело к появлению запутанных формулировок. Процесс проверки также был слабым: рецензентам давалось не более 5 минут на вопрос, и они не были обязаны верифицировать точность обоснований.
Для проверки команда FutureHouse использовала собственного ИИ-агента, который сверял ответы с научными публикациями. По итогам исследования, FutureHouse выпустила HLE Bio/Chem Gold - выверенный набор данных из вопросов HLE.
futurehouse.org
Илон Маск анонсировал в X, что компания планирует перезапустить популярный в прошлом сервис коротких видео Vine, но с интеграцией искусственного интеллекта. Он не раскрыл технических деталей и сроков запуска.
Сервис Vine, запущенный в 2013 году, был закрыт в 2017 на фоне конкуренции со стороны Snapchat и TikTok. После покупки Twitter (ныне X) Маск неоднократно проводил опросы среди пользователей, интересуясь, стоит ли возвращать платформу.
Илон Маск в сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤55👍22🔥13👏4🤬3👨💻2
VK обновила RuModernBERT — модель для обработки естественного русского языка. Она доступна на 150 и 35 миллионов параметров, обучена на 2 триллионах токенов.
Модель подойдет для задач в области обработки текста, например, для извлечения информации, анализа тональности, поиска и ранжирования в приложениях и сервисах — от книг и статей до соцсетей и кода. А еще есть две дополнительные версии для лучшей группировки и поиска похожей информации.
По скорости обгоняет аналоги: на длинных текстах — в 2–3 раза, на устройствах — на 10–20%. В тестах показала лучший результат среди русскоязычных NLP-решений.
Забрать можно на Hugging Face
Модель подойдет для задач в области обработки текста, например, для извлечения информации, анализа тональности, поиска и ранжирования в приложениях и сервисах — от книг и статей до соцсетей и кода. А еще есть две дополнительные версии для лучшей группировки и поиска похожей информации.
По скорости обгоняет аналоги: на длинных текстах — в 2–3 раза, на устройствах — на 10–20%. В тестах показала лучший результат среди русскоязычных NLP-решений.
Забрать можно на Hugging Face
👍96🤣34❤22🔥15😐11🌚7
Forwarded from Анализ данных (Data analysis)
🚀 Команда Qwen только что представила новую модель: Qwen3‑235B‑A22B‑Thinking‑2507, нацеленную на глубокие рассуждения.
За последние 3 месяца модель была масштабирована и доработана специально для задач логики, математики, науки и программирования. Среди ключевых улучшений:
✅ Улучшенные способности к рассуждению, решению задач и анализу
✅ Повышенная точность в следовании инструкциям и использовании инструментов
✅ Поддержка нативного 256K контекста — для полноценной работы с длинными цепочками мыслей
🧠 Модель изначально работает в режиме reasoning — включать ничего не нужно. Она самостоятельно строит длинные логические цепочки, обеспечивая максимальную глубину и точность.
🟡 Hugging Face: https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507
or https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🟡 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507
or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🟡 API Doc: https://alibabacloud.com/help/en/model-studio/models#16ff9753e1ctz
🧩 Новый Thinking‑режим поднимает планку для reasoning‑моделей в открытом доступе.
@data_analysis_ml
За последние 3 месяца модель была масштабирована и доработана специально для задач логики, математики, науки и программирования. Среди ключевых улучшений:
✅ Улучшенные способности к рассуждению, решению задач и анализу
✅ Повышенная точность в следовании инструкциям и использовании инструментов
✅ Поддержка нативного 256K контекста — для полноценной работы с длинными цепочками мыслей
🧠 Модель изначально работает в режиме reasoning — включать ничего не нужно. Она самостоятельно строит длинные логические цепочки, обеспечивая максимальную глубину и точность.
or https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Thinking-2507-FP8
🧩 Новый Thinking‑режим поднимает планку для reasoning‑моделей в открытом доступе.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥25❤19✍2🥰2🤣2
This media is not supported in your browser
VIEW IN TELEGRAM
Google Labs запустила публичную бета-версию инструмента Opal, в котором можно создавать простые ИИ-приложения без написания кода.
Пользователь описывает желаемую цель тестом, после чего система автоматически генерирует визуальную блок-схему рабочего процесса, объединяя в цепочку промпты, ИИ-модели и внешние инструменты.
Схему можно гибко редактировать в drag-and-drop интерфейсе или с помощью дальнейших текстовых команд.
Готовые проекты публикуются как самостоятельные веб-приложения, привязанные к аккаунту Google, и ими можно сразу поделиться по ссылке.
В основе Opal лежат модели Gemini. Инструмент доступен пока только для пользователей в США.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤54👍28🔥16👨💻3😁2
Андрей Рыбинцев, возглавлявший ИИ-направление более 10 лет, стал управляющим директором по искусственному интеллекту и вошел в правление компании. AI становится частью управленческой вертикали Авито.
Под его руководством окажется объединенная команда из ключевых подразделений, связанных с ИИ. Также в планах новый кластер AI Experience,который будет фокусироваться на развитии AI-ассистентов.
На счету Рыбинцева — запуск семейства моделей A-Vibe и A-Vision, антифрод, IMV и масштабирование Data Science в Авито. По прогнозам компании, GenAI может привнести более 21 млрд ₽ дополнительной выручки к 2028 году.
Под его руководством окажется объединенная команда из ключевых подразделений, связанных с ИИ. Также в планах новый кластер AI Experience,который будет фокусироваться на развитии AI-ассистентов.
На счету Рыбинцева — запуск семейства моделей A-Vibe и A-Vision, антифрод, IMV и масштабирование Data Science в Авито. По прогнозам компании, GenAI может привнести более 21 млрд ₽ дополнительной выручки к 2028 году.
🤷♂78🔥25❤14😁14🤣11👌8👍3🥰3