277K subscribers
3.94K photos
674 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🤖 Quantum Swarm

Quantum Swarm (QUARM) - это мощная мультиагентная система, которая обрабатывает запросы с помощью скоординированного роя специализированных ИИ-агентов.

Каждый агент играет уникальную роль в анализе и ответе на запросы пользователей, предоставляя свой вариант ответа на поставленную задачу.

Особенности

Сложные запросы обрабатываются несколькими специализированными агентами:

- Система Query Triage: Определяет сложность каждого запроса
- Интерпретатор запросов: Разбирает и анализирует запросы
- Специалист по исследованиям: Определяет ключевые области для исследования
- Критический анализатор: Оценивает информацию и выявляет пробелы
- Творческий исследователь: Генерирует новые варианты решения задачи
Синтезатор информации: - Объединяет идеи в последовательные ответы

🚀 Поддерживает различные интерфейсы:

- Поддержка CLI
- Простая Интеграция с Telegram-ботми
- RESTful API с поддержкой потоковой передачи данных
- Поддержка веб-интерфейса

🚨 Расширенные возможности:

- Потоковая передача ответов в реальном времени
- Память диалогов с автоматической очисткой
- Настраиваемые параметры агента
- Поддержка нескольких LLM-провайдеров (OpenAI, Groq, Heurist)
- Поддержка CORS для веб-интеграции

Установка:

git clone https://github.com/QuarmFW/Quarm.git
cd quarm


Github

@ai_machinelearning_big_data


#python #ai #ml #aiagents #agents #aiswarm
Please open Telegram to view this post
VIEW IN TELEGRAM
133👍19🔥10😁3👀2👏1👾1
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

Data Science: t.me/data_analysis_ml
Python: t.me/pythonl
МАШИННОЕ ОБУЧЕНИЕ: t.me/machinelearning_interview
C++ t.me/cpluspluc
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_ru
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
👍268🔥3😐3
🔸 Gated DeltaNet: гибридная архитектура нейронных сетей с управлением памятью.

Gated DeltaNet - экспериментальная архитектура, разработанная NVIDIA для управления памятью в контексте линейных трансформеров, которая может решить проблемы с забыванием в моделях, обрабатывающих длинные последовательности данных.

Gated DeltaNet предлагает использовать одновременно дельта-правило и гейтинг. Дельта-правило обновляет память модели, заменяя устаревшую информацию на новую, а механизм гейтинга удаляет ненужную информацию из памяти, чтобы она не мешала модели работать эффективно.

Архитектура Gated DeltaNet была разработана на основе алгоритма, который параллелит вычисления дельта-правила с использованием представления WY и оптимизирует работу с GPU на уровне тензорных ядер.

Перфоманс-тестирование Gated DeltaNet проводилось на бенчмарках языкового моделирования, ризонинга, контекстного извлечения, экстраполяции длины и понимания объемного контекста.

Модель Gated DeltaNet превзошла Mamba2 и DeltaNet на всех этих тестах. Например - улучшенная точность на задачах S-NIAH-2 и S-NIAH-3, где Gated DeltaNet показала более эффективное управление памятью по сравнению с DeltaNet и Mamba2 и превосходство в задачах ризонинга.

Гибридные архитектуры, сочетающие слои Gated DeltaNet с вниманием скользящего окна или слоями Mamba2 повысили эффективность обучения и производительность моделей.

Тестовые GatedDeltaNet-H1 и GatedDeltaNet-H2 дали еще более высокие результаты, используя комбинации Gated DeltaNet + SWA и Mamba2 + Gated DeltaNet + SWA соответственно.

Gated DeltaNet показала самые низкие показатели перплексии при экстраполяции на длинные последовательности до 20 тыс. токенов и продемонстрировала превосходные способности в извлечении информации, обучении в контексте и отслеживании состояния в задачах LongBench.

🔸Практическая реализация обучения Gated DeltaNet на Pytorch доступна в репозитории на Github

📌Лицензирование:

🟢Некоммерческое использование: Nvidia Source Code License-NC

🟠Коммерческое использование: по запросу через форму NVIDIA Research Licensing

🟡Arxiv

🟡GitHub

@ai_machinelearning_big_data


#AI #ML #LLM #NVIDIA #GatedDeltaNet
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4015🔥9🍾1
🖥 Cuda-120-Days-Challenge

Гайд 120-дневной программы обучения CUDA для всех, кто хочет углубиться в программирование на GPU.

Это структурированный, ежедневный план, охватывающий потоки, управление памятью, параллелизм и отладку и многое другое.

Урок на каждый день включает в себя:
- Разбор основной темы занятии
- Практическое упражнение / мини-проект
Разбор ошибок при отладке кода
- Рекомендованные ресурсы

Github
CUDA C Programming Guide
CUDA Toolkit Reference
CUDA Best Practices Guide
Бесплатный 12-ти часовой курс по CUDA от freeCodeCamp

@machinelearning_interview - материалы для мл собеса

#cuda #nvidia #freecourse #opensource #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68🔥198
⚡️ Китай продолжает выпускать новые МОЩНЫЕ и ДЕШЕВЫЕ модели искусственного интеллекта!

Материнская компания Tik-Tok, ByteDance, выпустила Doubao-1.5-pro.:
🔸На бенчмарках с GPT-4o они идут рука об руку
🔸Экономичная цена:
- 0,022 доллара за миллион кэшированных токенов
- 0,11 доллара за миллион токенов
- 0,275 доллара за миллион выходных токенов
🔸Преимущество в стоимости:
- в 5 раз дешевле, чем DeepSeek
- Более чем в 200 раз доступнее, чем OpenAI o1
🔸Особенности:
- контекстное окно размером 32k + 256k
Архитектура: Для повышения эффективности используется MoE
Влияние на рынок: Этот шаг является частью широкой китайской инициативы в области искусственного интеллекта от ByteDance и DeepSeek для доминировали на ИИ рынке

> превосходит на топовых бенчмарках почти всех остальных LLM
> превосходит o1 на AIME
> использует MoE с 7 экспертами
> 20b активированных параметров

https://team.doubao.com/zh/special/doubao_1_5_pro

#Doubao #llm #ml #ai #release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥85👍2816🥱4👏1👀1
🖤 Open R1

Разработчики с Hugging Face решили повторить полный цикл разработки DeepSeek - от сбора данных до обучения! 🔥

Цель этого репозитория - объяснить все части конвейера создания R1 таким образом, чтобы каждый мог повторить его или построить поверх него свой проект.

Из чего состоит проект:
- src/open_r1 содержит скрипты для обучения и оценки моделей, а также для генерации синтетических данных:
- grpo.py : обучение модели с помощью GRPO
- sft.py: простой SFT
- evaluate.py: оценка модели на основе тестов R1.
- generate.py: генерация синтетических данных с помощью Distilabel.
- Makefile содержит простую в выполнении команду для каждого шага конвейера R1.

Github

@ai_machinelearning_big_data


#opensource #DeepSeekR1 #huggingface #OpenR1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥109👍2614
This media is not supported in your browser
VIEW IN TELEGRAM
🌍 WebRover – это автономный ИИ-агент , предназначенный для взаимодействия с элементами веб-страниц и выполнения пользовательских запросов.

Агент построен на базе LangChain и LangGraph и в первую очередь создан, чтобы освободить пользователей от рутины, связанной с поиском и сбором информации.

Благодаря глубокому пониманию контекста и способности автоматически определять нужные элементы, WebRover эффективно справляется даже со сложными задачами.

Основные возможности WebRover включают:
- самостоятельную навигацию по сайтам, управление состоянием через LangGraph и автоматизированное взаимодействие с браузером посредством Playwright.
- агент способен анализировать содержимое страниц, делать скриншоты и формировать структурированные ответы и парить информацию.

Особенности
🤖 Навигация на основе GPT-4 для понимания контекста и интеллектуальной навигации по веб-сайтам
🎯 Интеллектуальное обнаружение элементов: Автоматически идентифицирует и взаимодействует с любыми элементами сайтов
📸 Визуальная обратная связь: Визуализация процесса навигации в реальном времени
🔄 Автономная работа: Самокорректирующаяся навигация со стратегиями обратного хода

git clone https://github.com/hrithikkoduri18/webrover.git
cd webrover
cd backend


Github

@ai_machinelearning_big_data


#aiagents #ai #ml #opensource
37👍24🔥14👾1
📕 Think Stats: Бесплатная книга по статистике.

Think Stats - это введение в теорию вероятностей и статистику для Python программистов и датасаентистов.

Каждая глава
доступна в виде блокнота Jupyter ноутбука, в котором можно запускать код и решать упражнения

⭐️ Книга доступна по лицензии Creative Commons, что означает, что вы можете свободно читать, копировать и распространять при условии указания ссылки на источник и не использования в коммерческих целях.

Книга
Github

@ai_machinelearning_big_data


#freebook #ml #probability #book #opensource #practice #книганедели
Please open Telegram to view this post
VIEW IN TELEGRAM
57👍25🔥16🥱1
💥Релиз Qwen2.5-1M!

Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН 🔥

⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.

Модель 14B-1M выигрывает у гораздо более крупной модели Qwen 2.5 Turbo (предположительно MoE с тем же количеством активных параметров).

Доступен подробный технический отчет о серии Qwen2.5-1M! 📊

📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40

@ai_machinelearning_big_data

#qwen #opensource #ml #llm
👍56🔥308
💰 Банк Китая выделит 1 триллион юаней (137 миллиардов долларов) в течение 5 лет для противостояния США в гонке искусственного интеллекта.

Это прямой ответ на проект «Звездные врата».

Евросоюз: максимум, что мы можем сделать, — это выделить 10 миллиардов на ИИ регулирование.

@ai_machinelearning_big_data

#ai #news #stargate #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥174😁95🤣3918👍17
⚡️ Мл сообщество активно обсуждает успехи Китая и DeepSeek-R1, в частности, в гонке за доминирование на рынке ИИ.

Релиз R1 и новости об инвестировании в развитие отрасли, вызвали падение акций американских ИТ-гигантов на бирже NASDAQ. Акции NVIDIA упали уже на 14% за сутки. Компания потеряла 465 млрд долларов и это антирекорд.

Но помимо R1 в этом месяце разработчики из Китая выпустили еще очень много интересных моделей 🔥 Китай набирает очень серьезные обороты,

Давайте посмотрим на список самых ярких релизов из Поднебесной за январь:

LLM:
InternLM3-8B-Instruct
MiniMax-Text-01
RWKV-7 RNN + трансформер 👀
Собственно сам DeepSeek-R1
Baichuan-M1-14B медицинский LLM 🩺
Qwen2.5-Math-PRM от Alibaba
Qwen2.5 -1M


Модели кодинга:
Tare от BytedanceTalk

TTS модели синтеза и генерации речи:
T2A-01-HD от MiniMax AI
LLaSA

МЛЛМ:
Kimi k1.5 от Moonshot AI
MiniCPM-o-2_6 от OpenBMB
Sa2VA-4B от ByteDanceOSS
VideoLLaMA 3 от Alibaba DAMO
LLaVA-Mini от Китайской академии наук

Hunyuan-7B от TXhunyuan
Hunyuan 3D 2.0

ИИ-агенты:
UI-TARS от ByteDanceOSS
GLM-PC

Датасеты:
Fineweb-Edu-Chinese-V2.1
Multimodal_textbook от Alibaba
MME-Finance от Hithink AI
GameFactory от KwaiVGI

@ai_machinelearning_big_data


#ai #ml #digest #china #deepseek #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥74👍2315😎5🥰3😁1🎄1
🐋 DeepSeek только что выпустила еще одну модель ИИ с открытым исходным кодом, Janus-Pro-7B.

Она мультимодальная и выигрывает у OpenAI DALL-E 3 и Stable Diffusion на бенчмарках GenEval и DPG-Bench.

Модели
: https://huggingface.co/deepseek-ai/Janus-Pro-7B
https://huggingface.co/deepseek-ai/Janus-Pro-1B
Quickstart: https://github.com/deepseek-ai/Janus?tab=readme-ov-file#3-quick-start 📖
Tech report: https://github.com/deepseek-ai/Janus/blob/main/janus_pro_tech_report.pdf

@ai_machinelearning_big_data


#ai #deepseek #opensource #Janus
1🔥159👍2915🙉5