195K subscribers
3.56K photos
543 videos
17 files
4.3K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Релиз Qwen 3 от Alibaba

В релиз вошли 2 MoE-модели и 6 Dense models (плотные модели), размером от 0.6B до 235B параметров.

🏆 Флагманская модель Qwen3-235B-A22B демонстрирует конкурентные результаты в задачах Кодина, математики и общих способностей, уверенно соперничая с передовыми моделями, такими как DeepSeek-R1, o1, o3-mini, Grok-3 и Gemini-2.5-Pro.
Небольшая MoE-модель Qwen3-30B-A3B превосходит QwQ-32B,  использую в 10 раз меньше параметров.
🔥 Компактная модель Qwen3-4B сопоставима по производительности с Qwen2.5-72B-Instruct.
🧠 Поддерживает гибридный режим мышления

Режим размышления активируется при обработке сложных задач, обеспечивая пошаговый анализ запроса и формирование комплексных, глубоких ответов.

Базовый режим используется для повседневных вопросов, позволяя выдавать быстрые и точные ответы с минимальной задержкой.

Процесс обучения модели устроен похожим образом на то, как это сделано в DeepSeek R1.

Поддерживает 119 языков, включая русский.

Лицензирование: Apache 2.0 🔥

🔜Попробовать: https://chat.qwen.ai/
🔜Blog: https://qwenlm.github.io/blog/qwen3/
🔜GitHub: https://github.com/QwenLM/Qwen3
🔜Hugging Face: https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
🔜 ModelScope: https://modelscope.cn/collections/Qwen3-9743180bdc6b48

@ai_machinelearning_big_data

#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ Perplexity доступен бесплатно в WhatsApp.

Perplexity AI запустила в WhatsApp своего ИИ-помощника, который может искать в интернете, работать в режиме чат-бота (вести переписку), генерировать и понимать изображения прямо через платформу мессенджера.

Чтобы воспользоваться, нужно добавить контактный номер +1 (833) 436-3285 в WhatsApp.

В ближайшее время ожидается появление множества дополнительных функций.

🔜 CEO PerplexityAI в X (ex-Twitter)

@ai_machinelearning_big_data


#Perplexity #ai #ml #chatbot
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Oracle и NVIDIA развернули тысячи GPU Blackwell для ИИ нового поколения.

Oracle запустила первые стойки с жидкостным охлаждением на базе NVIDIA GB200 NVL72, оснащенные тысячами GPU Blackwell. Системы уже доступны клиентам через NVIDIA DGX Cloud и Oracle Cloud Infrastructure (OCI) для разработки агентного ИИ и моделей логического вывода. В развертывании задействованы высокоскоростные сети Quantum-2 InfiniBand и Spectrum-X Ethernet. Каждая стойка GB200 NVL72 объединяет 72 GPU Blackwell и 36 CPU Grace, повышая энергоэффективность для задач вроде обучения автономных систем или проектирования чипов.

OCI, входящая в число первых облачных провайдеров с доступом к GB200, планирует создать суперкластеры с более чем 100 000 GPU Blackwell. Это ответ на растущий спрос на вычисления для ИИ-инференса.
blogs.nvidia.com

✔️ Hugging Face выпустит роботизированную руку за $100.

Hugging Face анонсировал программируемую роботизированную руку SO-101. Модель стоит от $100, собирается быстрее предшественницы SO-100 и оснащена улучшенными моторами: они снижают трение и выдерживают вес манипулятора без перегрузок. Камера и поддержка RL позволяют роботу «научиться» базовым задачам — например, сортировать детали Lego.

Цена зависит от комплектации: готовые сборки из-за тарифов и наценок доходят до $500. В проекте участвовали The Robot Studio, Wowrobo и Seeedstudio. Параллельно компания расширяет робототехническое направление: недавно купила Pollen Robotics. Похоже, Hugging Face намерена закрепиться в opensource-робототехнике, делая технологии доступнее.
techcrunch.com

✔️ ChatGPT стал слишком угодливым после обновления GPT-4o.

OpenAI обновил базовую модель GPT-4o, добавив улучшения в интеллект и «личность» ИИ. Но пользователи столкнулись с раздражающей подобострастностью: ChatGPT начал льстить так активно, что это вызвало волну критики в соцсетях. Сэм Альтман признал проблему, пообещав срочные исправления — часть уже в работе, остальные появятся на неделе.

В официальных заметках OpenAI упомянули «тонкие изменения в ответах», чтобы сделать диалоги продуктивнее. Однако на практике это вылилось в неестественное заискивание: ИИ стал навязчиво хвалить пользователей даже в простых диалогах.
Sam Altman в X (ex-Twitter)

✔️ Simular: ИИ-агент для macOS, который работает локально.

Simular выпустил ИИ-агента для macOS, который предлагает уникальный подход к взаимодействию с пользователем. В отличие от облачных решений, он работает полностью локально — встраивается в среду macOS и использует встроенный WebKit. Это не только ускоряет процессы, но и гарантирует безопасность: данные не уходят в облако, а остаются на вашем Mac.

Агент поможет с рутиной: проверит расписания, может управлять корзиной при онлайн-шопинге, анализировать новости и агрегировать поиск в Интеренте. Тесты их фреймворка S2уже обошли результаты OpenAI и Anthropic в мобильных и десктоп-задачах.
macobserver.com

✔️ PHYBench: ИИ пока отстает от людей в понимании физики.

Более 200 студентов и преподавателей Пекинского университета разработали PHYBench — уникальный набор из 500 физических задач для оценки способностей ИИ. В проекте участвовали золотые медалисты международных олимпиад, так что бенчмарк получился максимально обширным, сложным и реалистичным.

PHYBench использует метод оценки EED Score. Вместо стандартного «правильно/неправильно» алгоритм сравнивает структуру формул в виде «деревьев выражений», как это делают преподаватели. Это позволяет точнее измерить, насколько ответ ИИ близок к идеалу.

Тесты показали: даже топовая Gemini 2.5 pro дала лишь 36,9% верных ответов, в то время как студенты достигли 61,9%. Ошибки ИИ связаны с двумя этапами: распознаванием физических условий и построением логики решения (модели часто путают ключевые переменные или «теряются» в многоэтапных расчетах).
phybench-official.github.io

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🆕 Сбер показал GigaChat Audio — модель с улучшенным распознаванием аудио

GigaChat Audio — новая мультимодальная модель, которая не использует стандартную связку ASR + LLM. Вместо транскрипции звука в текст модель понимает аудиосигнал напрямую (end-to-end).

В сравнении side-by-side на 1200 диалогах GigaChat Audio понимает речь точнее:
• GigaChat Audio — 0.68;
• старая схема (ASR → GigaChat) — 0.32

⚡️Модель сравнялась с GPT-4o по 7 критериям (полезность, фактология, грамотность и др.) — особенно уверенно работает на русском языке.

GigaChat также умеет пересказывать, резюмировать и отвечать на вопросы по длинным аудиозаписям — включая лекции и подкасты. К слову, такими возможностями обладают далеко не все топовые LLM с аудиовходом.

🧠 GigaChat Audio свободно говорит на русском и английском, обобщается на другие языки.

🔜 Попробовать можно в веб-версии giga.chat и боте @gigachat_bot.
🔜 Полная статья: habr.com/ru/companies/sberdevices/articles/904894/

@ai_machinelearning_big_data

#news #ai #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI и Microsoft отдаляются друг от друга.

В партнерстве OpenAI с Microsoft появляются трещины. Хотя Microsoft помогла проекту OpenAI ChatGPT добиться большого успеха за счет огромных инвестиций, у генеральных директоров обеих сторон имеются разногласия по таким вопросам, как предоставление вычислительной мощности, доступ к моделям и способность ИИ достичь AGI. Microsoft активно разрабатывал Copilot и тайно сформировал команду для разработки модели, которая заменит OpenAI.

Даже несмотря на то, что обе стороны готовятся к своему независимому будущему, они остаются в зависимости друг от друга. Microsoft имеет право не допустить преобразования OpenAI в независимую коммерческую компанию, в то время как OpenAI может помешать Microsoft получить доступ к своим самым передовым технологиям.
wsj.com

✔️ Duolingo переходит на ИИ: людей заменят нейросети.

Duolingo объявила о запуске стратегии «AI-first» - компания постепенно откажется от наемных работников в пользу ИИ. Основатель, Луис фон Ан, в письме сотрудникам пояснил, что ИИ поможет убрать рутину, перестроить процессы и ускорить создание обучающего контента.

Внедрение ИИ коснется найма и оценки сотрудников — новые штатные позиции одобрят, только если команда не сможет автоматизировать задачи. При этом фон Ан подчеркивает: речь не о замене людей, а о перераспределении ресурсов. Сотрудникам обещают поддержку в обучении и переход к творческим проектам.

В Duolingo уверены, что ИИ не только повысит эффективность, но и приблизит миссию — сделать обучение доступным для миллионов. Технологии вроде «Video Call», имитирующие репетитора, уже тестируются. Компания готова мириться с временными недочетами в качестве, лишь бы не упустить момент.
theverge.com

✔️ Глава xAI анонсировал запуск Grok 3.5 на следующей неделе.

Илон Маск написал в X, что на следующей неделе ранняя бета-версия Grok 3.5 будет выпущена только для подписчиков SuperGrok. По его словам, это первый ИИ, который может точно отвечать на вопросы о ракетных двигателях или электрохимических технологиях.
Elon Musk в X (ex-Twitter)

✔️ Google добавила более 50 языков в сервис в NotebookLM.

Audio Overviews, который превращает ваши источники в диалоги в стиле подкастов, теперь поддерживает свыше 50 языков. Помимо английского, доступны испанский, португальский, французский, хинди, турецкий и РУССКИЙ.

Чтобы сменить язык, нужно зайти в настройки NotebookLM (в правом верхнем углу), выбрать «Язык вывода» — и AI начнёт генерировать ответы и озвучивать обзоры на нужном вам языке. NotebookLM интегрирован ещё и в Gemini, а также Google Docs — так что даже текстовые документы можно превратить в аудиоформат.

➡️ Аудио-версия дайджеста, сделана NotebookLM, зацените.
blog.google

✔️ Разработчики Llama запустила приложение для голосового взаимодействия с ИИ.

Разработчики llama представили новое приложение, где главной фишкой стал голосовой ассистент, работающий на модели Llama 4. В отличие от стандартных чат-ботов, здесь упор сделан на естественность диалога: ИИ генерирует речь в реальном времени благодаря полнодуплексной технологии, а не просто зачитывает текст. Пока функция доступна в США, Канаде, Австралии и Новой Зеландии — разработчики просят пользователей тестировать демо-режим и делиться фидбеком.

Приложение интегрируется с соцсетью компании, WhatsUp, и очками Ray-Ban Meta — начатый на одном устройстве диалог можно продолжить в веб-версии или мобильном интерфейсе. Ассистент учится на ваших данных: если подключить аккаунты соцсетей, он подстраивает ответы под интересы, запоминает предпочтения и предлагает персонализированные рекомендации.

Для тех, кто любит эксперименты, есть генератор изображений и шаблоны для документов — их можно редактировать голосом или текстом. А чтобы не перегружать интерфейс, голосовое управление включается одной кнопкой, а иконка микрофона всегда показывает, когда система вас «слышит». Скачать приложение уже можно на iOS и Android.
about.fb.com

✔️ Deepseek proofer v2 выходит в свет
У DeepSeek на подходе релиз (671B math/prover model), жаль не R2.
HF

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Облако, которое вошло в топ — и не зря

MTС Web Services возглавил рейтинг GPU Cloud 2025 по версии CNews.
Ключевые критерии, по которым оценивали участников: технологичность, надёжность, универсальность, стоимость.

Что внутри лидирующего сервиса:
• 15 GPU-конфигураций на базе A100, V100, T4 и др.
• CPU Intel Xeon Gold разных поколений
• Поддержка Kubernetes, VDI и MLOps-инструментов и платформы для управления LLM -,MWS GPT
• Надёжная архитектура Tier III + DRaaS
• Гибкие/фиксированные ресурсы, выделенные сегменты

А еще лучшая цена при высокой гибкости и технологичности.

@ai_machinelearning_big_data
📌Beyond-NanoGPT: лаконичные и аннотированные реализации ключевых идей глубокого обучения.

Если вы хотите не просто запускать готовые модели, а понять, как они работают «под капотом», репозиторий Beyond-NanoGPT — то, что нужно. Этот проект аспиранта по CS Стэнфордского университета, который создан как мост между учебными примерами вроде nanoGPT и сложными наработками, предлагает десятки реализаций современных методов глубокого обучения.

Все написано с нуля на PyTorch, с детальными комментариями — идеально для тех, кто устал от абстрактных статей и беспощадного продакшн-кода. Каждая строчка кода написана так, что становится понятно, как его использовать на практике.

Застряли на уровне чтения бесконечных туториалов и хотите двигаться дальше? Этот репозиторий — отличный шаг. Он не сделает вас экспертом за неделю, но даст инструменты, чтобы разобраться в современных статьях и начать свои эксперименты. И да, здесь нет красивого веб-интерфейса или готовых SaaS-решений — только код, комментарии и ваше любопытство. Как и должно быть в ресерче.

Начать очень просто: клонируете репозиторий, ставите зависимости и можно погружаться в код. Архитектуры? Есть Vision Transformer для классификации изображений, Diffusion Transformer для генерации, ResNet и даже MLP-Mixer. Каждый скрипт — отдельный эксперимент.

Например, чтобы обучить DiT на датасете CIFAR-10, достаточно запустить train_dit.py. Все рассчитано на один GPU, так что даже без доступа к злым кластерам можно практиковаться. А если хочется разобраться в механизмах внимания, отдельные ноутбуки покажут, как работают Grouped-Query, линейное, разреженное или перекрестное внимание — с визуализациями и пояснениями.

Проект не только про архитектуры, есть и прикладные техники. Хотите ускорить инференс языковой модели? Посмотрите реализацию KV-кэширования или спекулятивного декодирования — методы, которые сейчас активно используют в LLM-инфраструктуре.

Интересует RL? В разделе с обучением с подкреплением есть классика - DQN и PPO для Cartpole, а в планах — нейросеть для шахмат с MCTS. При этом код не просто работает, но и объясняет нюансы: почему в REINFORCE важна базовая линия, как избежать градиентного взрыва в трансформерах или чем RoPE-эмбединги лучше стандартных.

Часть разделов (Flash Attention, RLHF) пока в разработке. Но планы грандиозные: автор обещает все - от квантования весов до распределенного RL.


📌Лицензирование: MIT License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Github #BeyondNanoGPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 MiMo-7B: Набор компактных ризонинг-моделей от Xiaomi.

Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.

Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.

Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.

Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.

На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.

Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.

Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.

Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.

▶️ Состав набора:

🟠MiMo-7B-Base - базовая модель с потенциалом рассуждений;

🟠MiMo-7B-RL-Zero - RL-модель, обученная на основе базовой;

🟠MiMo-7B-SFT - модель SFT, обученная на основе MiMo-7B-Base;

🟢MiMo-7B-RL - RL-модель, обученная на основе SFT-модели, та, которая в бенчмарках обошла OpenAI o1-mini.


⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Xiaomi #MiMo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Qwen2.5-Omni-3B — оптимизированная, компактная Omni модель(3B), доступная для запуска на обычных потребительских GPU!

🔋 Экономия памяти: по сравнению с 7B-версией модель потребляет на 50 % меньше VRAM при обработке длинного контекста (~25 000 токенов).

📺 Мультимодальные режим: поддержка 30-секундных аудио- и видео«из коробки» на 24 GB видеокартах.

🤖 Высокое качество: модель сохраняет свыше 90 % точности ответов и обеспечивает естественный, стабильный синтез речи на уровне 7B-модели.

🔜 Репозиторий GitHub: https://github.com/QwenLM/Qwen2.5-Omni
🔜Hugging Face: https://huggingface.co/Qwen/Qwen2.5-Omni-3B
🔜ModelScope: https://modelscope.cn/models/Qwen/Qwen2.5-Omni-3B

#Qwen #omni #opensource

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM