193K subscribers
3.57K photos
543 videos
17 files
4.3K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
На прошлой неделе завершился финал Всероссийской олимпиады по математике. В Яндекс Образовании спросили у студентов AI360, какие у них воспоминания об участии в олимпиадах и что они посоветуют будущим финалистам.

AI360 — это совместная программа бакалавриата от Яндекса, Сбера и четырёх топовых российских вузов — ИТМО, ВШЭ, МФТИ и Иннополис — для будущих архитекторов и исследователей ИИ. В этом году к партнерам добавится еще и СПбГУ. Кстати, 40% студентов AI360 — победители и призеры Всероссийской олимпиады по математике и информатике.

Новый набор в этом году будет больше в полтора раза! Стартует летом, подробности по ссылке.
🔥 А вот и новый DeepSeek Prover v2, модель, заточенная исключительно на математику.

🚀Масштабная архитектура на базе, которая содержит 671 млрд параметров, что в 96 раз больше, чем у предыдущей версии Prover-V1.5 (7 млрд).

Построен на базе архитектуры «смеси экспертов» (MoE), что снижает затраты на обучение и повышает эффективность решения задач.

Модель заточена на формальное доказательство теорем с помощью языка программирования Lean 4, обеспечивая 100% логическую точность.

Lean 4 — это зависимо типизированный функциональный язык программирования и интерактивное средство доказательства теорем.

Результаты:
Новая Sota( 88,9%) на MiniF2F-test.
• DeepSeek-Prover-V2 смогла доказать 49 теорем из 658.

Для тренировки использовались 8 млн синтетических примеров, созданных через рекурсивный поиск решений теорем.

🔍 Как это работает:

1) Разложение теорем: DeepSeek-V3 по prompt'у разбивает сложные задачи на подцели.

2) Формализация: Пошаговые рассуждения переводятся в доказательства на Lean 4.

3) Cold-start: Полученные цепочки рассуждений и формальные доказательства используются как начальные данные для обучения модели.

🌟 Два размера:
7 B — базовый вариант.
671 B — расширенная версия на базе DeepSeek-V3-Base.

https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B

@ai_machinelearning_big_data

#DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ Гендиректор Microsoft: до 30% кода компании создано с помощью ИИ.

На конференции LlamaCon Сатья Наделла, глава Microsoft, заявил, что 20–30% кода в репозиториях компании генерируется искусственным интеллектом. По его словам, эффективность таких решений сильно зависит от языка: например, с Python ИИ справляется лучше, а с C++ пока есть сложности. Наделла подчеркнул, что результаты все еще неоднородны, но тенденция очевидна.

Ранее технический директор Microsoft Кевин Скотт прогнозировал, что к 2030 году ИИ будет писать до 95% всего кода. В то же время в Google, по словам CEO Сундара Пичаи, нейросети уже создают более 30% нового кода. Однако методы подсчета у компаний различаются, поэтому точность цифр - под вопросом. Марк Цукерберг, участвовавший в дискуссии, признался, что не знает аналогичных данных для своей компании.
techcrunch.com

✔️ Mellum от JetBrains: релиз языковой модели для разработчиков.

JetBrains опубликовала а опенсорс модель Mellum, созданную специально для задач разработки. В отличие от универсальных ИИ, Mellum фокусируется на умном завершении кода. Модель поддерживает Java, Python, Kotlin, Rust и еще десяток языков, а ее компактный размер (4 млрд. параметров) снижает затраты на вычисления. Публикация в открытом доступе — не просто жест доброй воли, в JetBrains верят, что прозрачность ускорит прогресс, как это было с Linux или Docker.

Уже сейчас модель обгоняет некоторых конкурентов в тестах на точность. На Hugging Face доступна базовая версия Mellum: ее можно дорабатывать, изучать или использовать как основу для экспериментов. JetBrains подчеркивает: Mellum — не готовый продукт, а инструмент для тех, кто хочет копать глубже.
blog.jetbrains.com

✔️ Anthropic предлагает смягчить экспортные ограничения на чипы ИИ для стран второго уровня.

Anthropic поддержала планы правительства США по ужесточению контроля над экспортом ИИ-чипов, но предложила свои поправки. В заявлении компании отметили, что текущая трехуровневая система (Китай и Россия — третий уровень с самыми жёсткими ограничениями, Мексика и Португалия — второй, Япония и Южная Корея — первый) требует корректировок.

Anthropic предлагает снизить квоты на закупку чипов для стран второго уровня без одобрения властей, чтобы стимулировать их покупать через межправительственные соглашения — это, по мнению компании, уменьшит контрабанду и усилит контроль США. Решения ожидаются к 15 мая — дате вступления правил в силу.
anthropic.com

✔️ Викимедиа внедряет ИИ для помощи редакторам.

Фонд Викимедиа представил новую стратегию использования ИИ, сделав ставку не на автоматизацию, а на усиление роли людей. Вместо того чтобы заменять волонтеров-редакторов, ИИ станет их инструментом: он возьмет на себя рутинные задачи, освободив время для творческой работы. Алгоритмы помогут отслеживать правки, ускорят перевод статей между языками и упростят поиск информации в огромной базе данных.

Особый акцент сделан на открытость: разработки будут базироваться на опенсорс-решениях, а все процессы останутся прозрачными. Стратегия не меняет миссию Википедии, а усиливает ее, делая знания доступнее в эпоху, когда ИИ все чаще влияет на информацию. Редакторы остаются главными героями, а технологии — их помощниками.
wikimediafoundation.org

✔️ Нью-Йоркское метро тестирует ИИ-камеры для предотвращения инцидентов до их начала.

Власти Нью-Йорка тестируют внедрение систем ИИ для «превентивного» анализа поведения людей в метро. Как заявил глава безопасности MTA Майкл Кемпер, камеры с искусственным интеллектом смогут распознавать признаки агрессии или неадекватных действий, если человек ведет себя странно, система отправит сигнал службе безопасности или полиции до эскалации ситуации. «ИИ — это будущее, и мы уже работаем с IT-компаниями над адаптацией технологий под метро», — добавил он, не уточняя деталей. Отдельно глава MTA подчеркнул, что система не использует распознавание лиц, а только анализ действий.
theverge.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ Gemini планирует интеграцию с GitHub.

Gemini для GitHub упростит работу с чужим кодом. Интеграция позволяет прикрепить репозиторий к запросу и получить от ИИ помощь: разобраться в структуре проекта, объяснить функции, предложить оптимизацию или найти баги.

Пока функционал ограничен: нельзя просматривать историю коммитов, пул-реквесты или вносить изменения напрямую в репозиторий. Загрузить можно только один проект (до 5000 файлов и 100 МБ), а для приватных репозиториев потребуется привязать GitHub-аккаунт к Google. Импорт доступен через веб-версию Gemini, но начатый диалог можно продолжить в мобильном приложении. Интеграция появится в настройках Gemini в ближайшее время.
9to5google.com

✔️ Релиз моделей серии Phi-4 с ризонингом.

Microsoft выпустила Phi-4-reasoning, Phi-4-reasoning-plus и Phi-4-mini-reasoning с 14 миллиардов параметров у первых двух и 3.6 млрд. у mini.

Phi-4-reasoning-plus обошёл 671-миллиардную DeepSeek-R1 в тестах AIME 2025, а mini-reasoning была создана для работы на смартфонах или IoT-устройствах: она решает задачи от школьного уровня до научных расчетов, не нагружая систему.
Детали создания доступны в техническом отчете, а сами модели - на Azure или HuggingFace.
azure.microsoft.com

✔️ Anthropic добавила интеграцию приложений и улучшила исследовательские возможности Claude .

Anthropic представила 2 ключевых обновления для своего Claude: интеграцию сторонних сервисов и расширенный инструмент для глубокого анализа. Новая функция "Integrations" позволяет подключать Claude к бизнес-приложениям вроде Confluence, Zapier или PayPal через серверы на базе протокола MCP. Это даст ИИ доступ к данным проектов, автоматизирует задачи и улучшает контекстную работу.

Параллельно запущен Advanced Research: теперь Claude может анализировать сотни источников (включая корпоративные данные и локальные диски) за несколько минут, формируя детальные отчеты со ссылками на источники. Обновление использует «рассуждающие» модели ИИ.

Функции доступны в бета-версии для подписчиков Claude Max, Team и Enterprise, а также скоро появятся в плане Pro. Anthropic также увеличила лимиты для кодинг-инструмента Claude Code.
anthropic.com

✔️ Google тестирует рекламу в диалогах с AI-чатами через AdSense.

Google начал внедрять рекламу в чаты пользователей с некоторыми сторонними ИИ-ассистентами через сеть AdSense. Функция, запущенная в этом году, уже тестировалась с стартапами Ask и Liner. Представитель компании подтвердил: «AdSense для Поиска доступен сайтам, которые хотят показывать релевантную рекламу в своих AI-диалогах».

Этот шаг выглядит попыткой монетизировать растущую популярность ИИ-чатов вроде ChatGPT или Claude, которые постепенно заменяют традиционный поиск. Ранее компания уже добавляла рекламу в ИИ-сниппеты поиска. Однако интеграция с внешними сервисами — новый этап.
bloomberg.com

✔️ Умные очки Ray-Ban будут собирать пользовательские данные для обучения ИИ.

Facebook-research внесли ключевые изменения в правила конфиденциальности своих умных очков Ray-Ban. С 29 апреля владельцы устройств больше не могут отключать сохранение голосовых записей в облаке — удалить их можно только вручную через настройки. По словам компании, аудио и транскрипты хранятся до года для улучшения продуктов, а случайные активации удаляются через 90 дней.

Фото и видео с камеры очков по-прежнему остаются в галерее смартфона и не используются для обучения ИИ, если не загружены в облачные сервисы компании или сторонние приложения. Однако голосовой помощник теперь всегда активен, пока пользователь не отключит его вручную. Это решение направлено на сбор данных для тренировки алгоритмов.
theverge.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 ReasonIR: обучение ретриверов для ризонинга.

Традиционные модели для поиска информации часто проваливаются в задачах, где нужны глубокие рассуждения: короткие фактологические запросы и простые документы из обучающих данных не учат их работать с многошаговыми вопросами.

ReasonIR был создан, чтобы решить эту проблему через синтетическую генерацию данных. Авторы создали ReasonIR-Synthesizer — пайплайн, который генерирует сложные запросы и «ложные» документы, похожие на полезные, но бесполезные на деле. Это заставляет модель учиться отличать настоящие паттерны, а не хвататься за поверхностные совпадения.

▶️Особенность метода — 2 типа данных:

🟢Первый, VL (varied-length), включает запросы длиной от 300 до 2000 слов, чтобы модель научилась работать с контекстом любой сложности.

🟢Второй, HQ (hard queries), — это вопросы, требующие анализа и логических шагов, например: «Как изменения климата повлияют на экономику прибрежных регионов к 2040 году?».

Для обучения тестовой модели ReasonIR-8B использовали контрастивное обучение с «хард негативами» (документами, которые кажутся релевантными, но таковыми не являются). Под капотом — доработанная LLama3.1-8B с двунаправленной маской внимания, обученная на смеси публичных данных (1,3 млн. примеров) и синтетики (около 345 тыс.).

На бенчмарке BRIGHT, (задачи из биологии, экономики и программирования), ReasonIR-8B показала 29.9 nDCG@10 без реранкера и 36.9 — с ним. Для сравнения: BM25, классический алгоритм, дает всего 14.8.

В RAG-сценариях модель подняла точность на MMLU на 6.4%, а на GPQA — на 22.6%, обогнав даже поисковик you.com. Причем чем детальнее переписывался запрос (например, добавлением контекста через GPT-4), тем лучше работала модель — другие ретриверы на длинных запросах «задыхались».

Авторы также оптимизировали вычисления: модель обходит LLM-реранкеры в 200 раз по эффективности, экономя ресурсы без потерь в качестве.

▶️Пример инференса на Transformers:

from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("reasonir/ReasonIR-8B", torch_dtype="auto", trust_remote_code=True)

query = "The quick brown fox jumps over the lazy dog."
document = "The quick brown fox jumps over the lazy dog."
query_instruction = ""
doc_instruction = ""
model = model.to("cuda")
model.eval()
query_emb = model.encode(query, instruction=query_instruction)
doc_emb = model.encode(document, instruction=doc_instruction)
sim = query_emb @ doc_emb.T



📌Лицензирование кода : CC-BY-NC-4.0 License.

📌Лицензирование модели: CC-BY-SA-4.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #ReasonIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ Ideogram 3.0: больше реализма и новые инструменты для разработчиков.

Ideogram представил масштабное обновление своей нейросети для генерации изображений. Версия 3.0 создаёт более фотореалистичные картинки, точнее понимает запросы и предлагает вдвое больше стилей. Теперь можно загрузить до 3-х референсов, чтобы задать стиль генерации, или выбрать готовый из библиотеки.

Новые инструменты: Magic Fill и Extend. Первый позволяет менять или добавлять элементы в готовом изображении, а второй — расширять его за рамки исходного кадра. Для разработчиков открыли API с текстовой генерацией, редактированием, заменой фона и другими функциями. Интегрировать Ideogram 3.0 можно через партнерские платформы: Picsart, Freepik, Replicate и другие.
Ideogram в X (ex-Twitter)

✔️ Midjourney анонсировала функцию Omni-Reference.

Midjourney тестирует новую функцию, Omni-Reference, которая позволяет тонко настраивать визуальные элементы в создаваемых изображениях. В отличие от старого Character Reference (v6), система теперь поддерживает не только персонажей, но и отдельные объекты — например, можно указать: «Добавь именно этот меч в сцену».

Omni-Reference доступен в веб-интерфейсе сервиса (перетаскивание изображения в зону «omni-reference») или в Discord через параметр --oref с URL. Силу влияния reference регулирует параметр --ow (0–1000): низкие значения подходят для стилизации, а высокие — для сохранения деталей вроде лица или одежды.
Midjourney в Discord

✔️ Apple и Anthropic планируют добавить вайб-кодинг в Xcode.

Apple совместно с Anthropic готовит обновление Xcode с интеграцией Claude Sonnet. По данным Bloomberg, внутренняя версия уже тестируется сотрудниками: разработчики могут запрашивать код через чат, инспектировать интерфейсы и исправлять ошибки с помощью ИИ. Это ускорит процессы разработки, но пока неясно, когда инструмент станет доступен публично.

Ранее Apple анонсировала Swift Assist, однако проект застопорился из-за частых галлюцинаций ИИ. Сотрудничество с Anthropic должно решить эти проблемы.
macrumors.com

✔️ FutureHouse представила ИИ-агентов для научных исследований.

Некоммерческая организация FutureHouse, поддержанная Эриком Шмидтом, запустила платформу с четырьмя ИИ-агентами: Crow, Falcon, Owl и Phoenix. Они помогают анализировать научную литературу, планировать эксперименты и искать данные в специализированных базах. По словам разработчиков, их система использует открытые научные работы и многоэтапный анализ с «прозрачной логикой».

FutureHouse предупреждает, что Phoenix, отвечающий за химические эксперименты, может выдавать некорректные результаты и призывает пользователей делиться обратной связью для доработки.
futurehouse.org

✔️ Инженеры создали первый фотонный чип для обучения ИИ.

Специалисты из Пенсильванского университета представили революционный фотонный чип, способный обучать нейросети с помощью света. Технология не только ускоряет процесс в разы, но и резко снижает энергозатраты, открывая путь к полностью оптическим вычислениям. В отличие от традиционных электронных чипов, здесь данные обрабатываются световыми импульсами, а не электричеством — это позволяет выполнять сложные нелинейные операции, критичные для глубокого обучения.

Основа инновации — управление светом через специальный полупроводниковый материал. Два луча («signal» и «pump») взаимодействуют, меняя свойства материала в реальном времени. Это дает возможность перепрограммировать чип без изменения его структуры, достаточно настроить параметры «pump»-луча. В тестах система показала 97% точности на задачах с нелинейными границами решений, обойдя цифровые аналоги по эффективности.

Уже сейчас 4 оптических соединения на чипе заменяют 20 электронных, а в будущем технология может масштабироваться для обучения LLM.
scitechdaily.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Atropos: тренажерный зал для RL языковых моделей.

Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.

Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.

Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.

Практическая польза протестирована в экспериментах:

🟢В задачах параллельного вызова функций точность тестовой модели DeepHermes Tool Calling Specialist выросла в 4,6 раза — с 10% до 46%.

🟢В прогнозировании финансовых показателей на модели DeepHermes Financial Fundamentals Prediction Specialist, RL через Atropos удвоил точность (с 20% до 50%).

Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.

Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.

Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.

В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.

Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.


📌Лицензирование: MIT License.


🟡Статья
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
📈 За последние 28 дней сайт ChatGPT посетили больше людей, чем X (Твиттер).

- ChatGPT посетили 4,786 млрд раз
- X 4,028 млрд посещений


@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 На видео 32-летний Янн Лекун демонстрирует первую в мире сверточную нейронную сеть (CNN) для распознавания текста в 1993 году .

📅 Когда появились традиционные методы обработки изображений:

Традиционные (или классические) методы начали развиваться с 1960-х годов, а активно применяться — с 1970–1980-х, задолго до появления современных нейросетей.

✔️ К таким методам относятся:

- Фильтрация изображений (Гаусс, Собель, Лаплас и др.)

- Детектирование границ (Canny, Prewitt)

- Морфологическая обработка (эрозия, дилатация)

- Бинаризация, сегментация, пороговая фильтрация

- Шумоподавление, выделение контуров

📍 К 1990-м эти техники уже активно использовались в промышленности, медицине, военной технике и OCR (распознавании текста), например в факсах и сканерах. Именно в этом контексте и появлялись первые попытки заменить часть ручной обработки нейросетями, как сделал Лекун с CNN.

Всем продуктивного дня ☀️

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Arenadata представила новую дата-платформу Arenadata One: облачную экосистему хранения и обработки данных следующего поколения

Arenadata запустила Arenadata One (AD.One) — cloud-native платформу хранения и обработки данных, созданную специально для работы в мультитенантных облачных средах на базе Kubernetes®.

Что делает AD.One особенной?
🔹 Разделённые Compute и Storage → легко масштабировать ресурсы
🔹 Поддержка S3 Object Storage → единое унифицированное хранилище
🔹 Форматы данных на любой вкус
🔹 Одновременная аналитическая и транзакционная нагрузка
🔹 AI-хранилище для ML/AI задач
🔹 Встроенные инструменты Data Governance, оркестрации, мониторинга и аудита
🔹 Multi-tiering-архитектура → быстрый доступ к «горячим» данным
🔹 Гибридный обмен данными (Public/Private Cloud)

Платформа покрывает задачи от ad hoc-запросов до real-time-аналитики (Spark, Impala), а также поддерживает транзакции на Serverless Postgres (Neon) и хранение векторов и features для AI.

💥 В чём отличие от классических bare-metal СУБД?
AD.One не требует резервирования оборудования и работает в эластичных облачных средах. Это снижает TCO и Time to Market благодаря:
автоматическому масштабированию нагрузки
переиспользованию вычислительных ресурсов
DBaaS-сервису
единой self-service-консоли управления с шаблонами развёртывания

Платформа подходит для построения современных архитектур больших данных (включая Lakehouse) и будет интересна компаниям с неоднородными пиками нагрузки, стремящимися снизить стоимость владения СУБД.

👉 Подробнее о Arenadata One: arenadata.tech/products/arenadata-one
⚡️ Matrix3D: универсальная модель для фотограмметрии от Apple.

Matrix3D — модель, предлагающая решение сразу нескольких задач в рамках единой архитектуры: оценку положения камер, предсказание глубины и генерацию новых ракурсов.

Всю эту красоту обеспечивает модифицированный диффузионный трансформер, который обрабатывает изображения, параметры камер и карты глубины как взаимосвязанные модальности. Он не только упрощает традиционный пайплайн (нет зависимостей от отдельных алгоритмов SfM или MVS), но и повышает точность за счет уникальной оптимизации.

Ключевая особенность Matrix3D — маскированное обучение, позаимствованное из методов MAE. Модель тренируется на частично заполненных данных: парах «изображение-поза» или «изображение-глубина». При этом модель учится «достраивать» недостающие модальности, что позволяет комбинировать входы и выходы во время инференса. Например, можно добавить карту глубины с физического датчика или сгенерировать новые ракурсы на основе всего двух изображений.

Результаты тестов с задачей оценки поз на датасете CO3D Matrix3D обходят специализированные методы (RayDiffusion): точность определения положения камеры достигает 96,3% против 92,4% у конкурентов.

В синтезе видов модель демонстрирует PSNR 20,45 против 19,22 у SyncDreamer, а в оценке глубины — AbsRel 0,036 против 0,064 у Metric3D. При этом Matrix3D не требует отдельных моделей для каждой задачи, все решается в рамках одной модели.

Практическая ценность модели — в ее адаптивности. Например, для 3D-реконструкции из одного кадра Matrix3D сначала генерирует недостающие ракурсы, оценивает их позы и глубину, а затем оптимизирует сцену через 3D Gaussian Splatting.

Для работы с несколькими кадрами без известных поз модель сама восстанавливает параметры камер, что раньше требовало отдельного этапа с COLMAP. Все это реализовано в репозитории с готовыми скриптами — от синтеза видов до полной реконструкции.

Конечно, есть нюансы: качество облаков точек пока уступает другим методам (GeoMVSNet). Но даже имеющиеся результаты достаточны для инициализации 3DGS, а главное — весь процесс занимает несколько минут на одной RTX 3090. Для сравнения: CAT3D, хотя и точнее в синтезе, требует 16х A100 и оптимизации под каждую сцену.


🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Photogrammetry #Matrix3D #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM