279K subscribers
3.95K photos
675 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone git@github.com:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml
🔥49👍2114👾2
📕 Foundations of Large Language Models

Эта свежая бесплатная книга (и отлично чтиво на выходные) по LLM, которая только что появилась на arXiv.

Более 230+ страниц!

Книга состоит из четырех частей: предварительному обучению, генеративным моделям, промпт-инжинирингу и методам оптимизации LLM.

Это хорошее введение в большие языковые модели для разработчиков и студентов.

📌 Читать

@ai_machinelearning_big_data


#freebook #book #machinelearning #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍68🔥2414👾2
⭐️ NVIDIA выпустили AceMath - новый мощный набор математических моделей, предназначенных для решения сложных задач.

Флагманская модель AceMath-72B-Instruct выглядит лучше Qwen2.5-Math-72B и превосходит GPT-4o и Claude-3.5 Sonnet в области решения математических задач.

В открытом доступе
выложили модели обучения, модели вознаграждения, полные наборы датасетов и бенчмарки: 🤗 HF: https://huggingface.co/collections/nvidia/acemath-678917d12f09885479d549fe
📄 Статья: https://arxiv.org/pdf/2412.15084

@ai_machinelearning_big_data


#math #nvidia #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍61🔥159
⭐️ Самые интересные Open Source AI релизы за неделю

- VideoChat2-Flash, мощный MLLM, построенный на базе видеокодера (UMT) и LLM (Qwen).
Внутри новая высокоэффективная архитектура модели с исключительной скоростью инференса, которая позволяет кодировать каждый видеокадр всего в 16 токенов, что в 5-10 раз быстрее, чем в предыдущей модели OpenGVLab.
Модели представлены в размерах 2B и 7B и разрешении 224 и 448.

- BytedanceTalk выпустил модель SA2VA с параметрами 26B.
Sa2VA - это MLM, способный отвечать на вопросы, понимать изображения и видео выполнять сегментацию. Модель, сопоставима с SOTA моделями в своем классе Qwen2-VL и InternVL2.5 в QA тестах.

- VRC-Bench - это новый бенчмарк для оценки эффективности мультимодальных LLM.

- MiniCPM-o 2.6 - это новая мультимодальная модель с 8B параметрами, работающая на edge девайсах. Лучшая в своем классе возможности двуязычной речи с разговором в реальном времени и клонированием голоса.

💬 LLM
- MiniMax-Text-01 - новая языковая модель, которая стабильно обходит GPT-4o и Gemini-2 на бенчмарках с длинным контекстом, сохраняя высокие оценки (0.910-0.963) при длине контекста до 4M токенов🤯

- Датасет: Sky-T1-data-17k - это разнообразный набор данных, используемый для обучения Sky-T1-32B - ризонинг модели, которую можно обучить всего за 450 долларов!

- Kyutai labs выпустили Helium-1 Preview 2B - многоязычный LLM для edge девайсов и мобильных устройств.

- Wayfarer-12B - новая модель генерации текстовой приключенческой ролевой игры от AI Dungeon🧙🏻

- ReaderLM-v2 - это новая модель синтаксического анализа HTML от JinaAI.

- Вriaforall выпустила Dria-Agent-a-3B, новую модель генерации кода (для Python), основанную на Qwen2.5.

- UnslothAI адаптировали Phi-4 к архитектуре Llama 3.3 сделав, более быструю и экономичную по памяти версию.

👀 Vision
- MatchAnything - это новая универсальная модель для сопоставления изображений.
- FitDit - это высококачественная модель виртуальной примерочной, основанная на архитектуре DiT.

⭐️ Аудио
- OuteTTS-0.3-1B - это новая многоязычная модель преобразования текста в речь с возможностью клонирования голоса и управления эмоциями.

📖 Поиск
- Lightblue выпустила новую модель для поиска связи в тексте, основанную на Qwen2.5. LB-reranker-0.5B-v1.0, которая поддерживает более 95 языков
- cde-small-v2 - это новая SOTA модель эмбедингов текста небольшого размера.

🧠 Playground
LeetGPU - бесплатная платформа для написания и запуска кода на CUDA.
Вы можете практиковаться и изучать CUDA онлайн, без использования графического процессора!

@ai_machinelearning_big_data


#ml #digest #datasets #opensource #ai #llm #news
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍54🔥127🦄2
🖥 Google опубликовали один из лучших официальных гайдов по ИИ-агентам. И его действительно стоит прочитать.

В нем содержится все, что вам нужно знать:
> Описание агентов, компонентов и когнитивных архитектур.
> Разобраны инструменты по работе с агентами: расширения, написании функций и хранилища данных.
> Описываются методы обучения для повышения производительности агентов.
> Описываются методы создания агентов с использованием LangChain и LangGraph

Читать гайд

@ai_machinelearning_big_data


#aiagents #ai #llm #ml #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
155👍21🔥17❤‍🔥3👏1👀1
🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.

@ai_machinelearning_big_data


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml
39👍22🔥9