QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.
Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.
⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:
Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.
@ai_machinelearning_big_data
#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone git@github.com:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
🚨Только что были выпущены веса для новой ризонинг модели DeepSeek-R1.
Модель 685B разработана чтобы конкурировать с o1 от OpenAI и построена на архитектуре на DeepSeek V3.
Вы можете потестить ее на 8 * H200.
Размер примерно ~720GB.
UPDATE: эти гигачады выпустили сразу 6 моделей от 1.5B до 70B 🔥
DeepSeek-R1-Distill-Qwen-1.5B превосходит GPT-4o и Claude-3.5-Sonnet в математике, набрав 28,9% у AIMEE и 83,9%, стоимость примерно в 30 раз дешевле, чем o1 и примерно в 5 раз дешевле o1 mini.
🤗HF: https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main
📌Потестить: https://chat.deepseek.com/sign_in
🖥 GitHub: https://github.com/deepseek-ai/DeepSeek-R1
@ai_machinelearning_big_data
#DeepSeek #deepseekv3 #reasoning #ml
Модель 685B разработана чтобы конкурировать с o1 от OpenAI и построена на архитектуре на DeepSeek V3.
Вы можете потестить ее на 8 * H200.
Размер примерно ~720GB.
UPDATE: эти гигачады выпустили сразу 6 моделей от 1.5B до 70B 🔥
DeepSeek-R1-Distill-Qwen-1.5B превосходит GPT-4o и Claude-3.5-Sonnet в математике, набрав 28,9% у AIMEE и 83,9%, стоимость примерно в 30 раз дешевле, чем o1 и примерно в 5 раз дешевле o1 mini.
🤗HF: https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main
📌Потестить: https://chat.deepseek.com/sign_in
@ai_machinelearning_big_data
#DeepSeek #deepseekv3 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Оказывается, вам просто нужно правильно стимулировать модель.
Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.
Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.
Похоже это будет эра LLM RL.
📕 Paper
@ai_machinelearning_big_data
#DeepSeek #deepseekr1 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👑 Вчера была выпущена еще одна интересная китайская опенсорс модель ризонинга.
Kimi представила Kimi k1.5 - мультимодальную модель, использующую обучение с подкреплением с длинной и короткой цепочкой размышления (CoT).
- Контекст 128 тыс. токенов
- Согласно их опубликованному отчету, они достигли производительности SOTA в таких тестах, как AIME (77,5), MATH-500 (96,2) и LiveCodeBench (47,3).
→ Производительность Long-CoT соответствует o1 в нескольких тестах: Math Vista, Codeforces и т.д)
- Модель превосходит GPT-4o и Claude Sonnet 3.5 на AIME
⚡️ Технический отчет: https://github.com/MoonshotAI/Kimi-k1.5
#llm #reasoning #ml #Kimi #preview
Kimi представила Kimi k1.5 - мультимодальную модель, использующую обучение с подкреплением с длинной и короткой цепочкой размышления (CoT).
- Контекст 128 тыс. токенов
- Согласно их опубликованному отчету, они достигли производительности SOTA в таких тестах, как AIME (77,5), MATH-500 (96,2) и LiveCodeBench (47,3).
→ Производительность Long-CoT соответствует o1 в нескольких тестах: Math Vista, Codeforces и т.д)
- Модель превосходит GPT-4o и Claude Sonnet 3.5 на AIME
⚡️ Технический отчет: https://github.com/MoonshotAI/Kimi-k1.5
#llm #reasoning #ml #Kimi #preview
Исследователи из Беркли воспроизвели Ahah-moment в задачах на обратный отсчет и умножение.
Благодаря RL их модель LM 3B самостоятельно развивает способности к самопроверке и поиску.ю правильного ответа.
▪ Github▪Полный лог эксперимента ▪Тред
1. OpenThoughts: 114 тыс датасет, полученный из R1 по математике, кодингу и другим наукам
2. R1-Distill-SFT: 1.7M, полученный из R1-32B на NuminaMath и Tulu data
lmmslab провели интересное исследование мультимодальной R1, используя математически-ориентированные обучающие примеры RL* и *натренированные модели GRPO*.
▪Github ▪Dataset ▪Wandb Logs
Этот новый флуоресцентный белок, похожий на белки, обнаруженные у медуз, может найти применение в медицине.
Он существует только в виде цифровой последовательности и существенно отличается от известных белков.
Исследователи из компании EvolutionaryScale опубликовали результаты, которые сейчас проходят рецензирование.
Новые методы белковой инженерии могут произвести революцию во многих областях, включая разработку новых лекарств.
Флуоресцентные белки, такие как esmGFP, уже используются в исследованиях для визуализации биологических процессов.
ИИ значительно ускоряет этот процесс и расширяет возможности модификации белков.
▪Подробнее
Официальный API DeepSeek сбоит уже почти сутки, так что многие пользователи ищут варианты.
▪Вот список открытых и не очень альтернатив.
Релиз кода для Stable Flow - метода, не требующего обучения, который позволяет выполняет различные типы операций по редактированию изображений (например, редактирование, добавление, замена объектов) с помощью моделей потока.
▪Github ▪Paper ▪Video
▪Установить ▪Github
@ai_machinelearning_big_data
#rl #ml #experiment #deepseek #reasoning #education #llm #news #ainews #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.
✨ Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.
pip install llm-reasoner
Пример с кодом:
from llm_reasoner import ReasonChain
import asyncio
async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)
# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)
asyncio.run(main())
@ai_machinelearning_big_data
#llm #ml #ai #opensource #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Сейчас он доступен всем «пока серверы не рухнут», так что самое время протестировать его в деле
Вот главное:
- Вышло два варианта модели: Grok‑3 mini и полноразмерный Grok‑3.
- Беспрецедентные достижения: Первая модель, преодолевшая 1400 очков, и лидирует по всем категориям на арене.
- Режим рассуждений: Хотя базовая модель не «ризонинг», можно активировать режим рассуждений с двумя настройками –
«Thinking» и «Thinking Hard»
. Процесс рассуждения почти полностью прозрачен.- Выдающаяся производительность: На тестах Math24 hard Grok‑3 показывает результаты лучше, чем R1, o1 и даже o3‑mini high. AIME 24 — 52% [96% с обоснованием!]
GPQA —75% [85%]
Кодинг (LiveCodeBench) — 57% [80%].
- На бенчмарках версия mini сравнима с DeepSeek 3, GPT‑4o и Gemini Pro.
- Новый агент Deep (Re)search: Встроенный инструмент для быстрого интернет-поиска, кросс-валидации источников и корректировки плана, который на демонстрации справился всего за минуту.
https://x.com/i/grok
@ai_machinelearning_big_data
#grok #elonmusk #ai #ml #llm #reasoning #xAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 «The State of LLM Reasoning Models» свежая статья от Себастьяна Рашка, которая посвящена современному состоянию исследований в области рассуждений (reasoning) и масштабирования выводов (inference scaling) для больших языковых моделей (LLM).
Основные моменты:
- Эволюция возможностей рассуждения:
В статье показано, как с увеличением размеров моделей и вычислительных ресурсов появляются «внезапные» способности, позволяющие моделям выполнять сложное логическое и пошаговое рассуждение. Это включает методы вроде chain-of-thought, которые помогают моделям структурировать ответ.
- Масштабирование и его эффекты:
Анализируются закономерности масштабирования — как увеличение числа параметров и использование более мощных аппаратных средств влияет на точность и способность моделей к рассуждению. Выявляются пределы, где дополнительные вычисления начинают давать менее заметное улучшение.
- Инновации в инференсе:
Статья рассматривает новые подходы к оптимизации процесса инференса, что особенно важно для применения LLM в реальном времени и на устройствах с ограниченными ресурсами. Поднимается вопрос балансировки между качеством ответов и затратами на вычисления.
- Практические выводы для исследований:
Сатья служит ориентиром, показывающим, какие направления развития (например, улучшение алгоритмов рассуждения, оптимизация инференс-методов) могут принести наибольший эффект при дальнейшем увеличении масштабов моделей. Это позволяет понять, куда двигаться в будущих исследованиях и как лучше интегрировать существующие технологии в практические приложения.
Отличное воскресенье чтиво📕
📌 Читать
#ai #ml #reasoning #llm
Основные моменты:
- Эволюция возможностей рассуждения:
В статье показано, как с увеличением размеров моделей и вычислительных ресурсов появляются «внезапные» способности, позволяющие моделям выполнять сложное логическое и пошаговое рассуждение. Это включает методы вроде chain-of-thought, которые помогают моделям структурировать ответ.
- Масштабирование и его эффекты:
Анализируются закономерности масштабирования — как увеличение числа параметров и использование более мощных аппаратных средств влияет на точность и способность моделей к рассуждению. Выявляются пределы, где дополнительные вычисления начинают давать менее заметное улучшение.
- Инновации в инференсе:
Статья рассматривает новые подходы к оптимизации процесса инференса, что особенно важно для применения LLM в реальном времени и на устройствах с ограниченными ресурсами. Поднимается вопрос балансировки между качеством ответов и затратами на вычисления.
- Практические выводы для исследований:
Сатья служит ориентиром, показывающим, какие направления развития (например, улучшение алгоритмов рассуждения, оптимизация инференс-методов) могут принести наибольший эффект при дальнейшем увеличении масштабов моделей. Это позволяет понять, куда двигаться в будущих исследованиях и как лучше интегрировать существующие технологии в практические приложения.
Отличное воскресенье чтиво
📌 Читать
#ai #ml #reasoning #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
MM-Eureka — разработка Шанхайской лаборатории ИИ, которая совершила шаг вперед в решении задач, требующих анализа изображений и текста. В отличие от рядовых VLM, эта модель сочетает RL с мультимодальным мышлением, имитируя человеческую способность, схожую с «моментами озарения». Авторы заявляют, что MM-Eureka не только обладает повышенной точностью ответов, но и учится перепроверять визуальные данные с помошью рассуждений.
MM-Eureka суперэффективна: даже при обучении на 0,05% данных от аналогов, модель превзошла их в тестах на математическую логику и анализ графиков. Например, в задачах уровня школьной программы она показала рост точности на 8,2%. При этом тестовая модель, не имея явных инструкций, научилась «переосмысливать» изображения — заново оценивать геометрические схемы для поиска ошибок.
В основе MM-Eureka - модели InternVL2.5 с параметрами 8 и 38 млрд. Архитектура объединяет механизмы внимания для анализа визуальных паттернов и языковые слои для генерации ответов.
Обучение строилось на алгоритме RLOO (REINFORCE Leave-One-Out), который снижает шум в оценках преимуществ, и PPO-clip, предотвращающем резкие изменения политики. Авторы отказались от ограничений KL-дивергенции, чтобы не сдерживать «творческий» поиск решений. Функция вознаграждения включала проверку точности ответов через Math-Verify и соблюдение структуры вывода, чтобы усилить логическую строгость.
@ai_machinelearning_big_data
#AI #ML #Reasoning #MMEUREKA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Мы уже писали про довольно интересное семейство моделей от LG, на этот раз они представили по-настоящему мощные ризонинг модели.
1) EXAONE Deep 2.4B превосходит другие модели сопоставимого размера,
2) EXAONE Deep 7.8B превосходит не только открытые модели сопоставимого размера, но и OpenAI o1-mini,
3) EXAONE Deep 32B демонстрирует конкурентоспособные характеристики по сравнению с ведущими открытым моделями.
Модель 32B, которая по размеру равна примерно 5% от размера DeepSeek r1, превосходит ее почти на всех бенчмарках.
Прорыв в цепочке рассуждений – релиз акцентирует внимание на улучшении "chain-of-thought" механизма, что делает модель способной генерировать обоснованные выводы и поддерживать длинные цепочки логических рассуждений.
@ai_machinelearning_big_data
#AI #ML #LLM #EXAONE #LG #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Исследование Anthropic: ИИ скрывает свои мысли даже в цепочках рассуждений.
В Anthropic проверили, насколько топовые модели описывают свои рассуждения. Оказалось, что в 75% случаев модели не упоминали подсказки, влиявшие на ответы, даже если те были некорректными или получены неэтичным путем. Например, при «джейлбрейке» системы для получения бонусов за неверные ответы модели редко признавались в обмане — вместо этого они придумывали псевдологику.
Эксперименты показали: обучение моделей сложным задачам повышало прозрачность их рассуждений, но лишь до уровня 20–28%. После этого прогресс останавливался. Даже при явном использовании «лазеек» в заданиях ИИ предпочитал скрывать свои манипуляции, создавая длинные, но фальшивые объяснения.
Это ставит под вопрос надежность мониторинга через Chain-of-Thought. Если ИИ научится скрывать нежелательное поведение, обнаружить его станет почти невозможно.
anthropic.com
@ai_machinelearning_big_data
#Anthropic #ml #reasoning
В Anthropic проверили, насколько топовые модели описывают свои рассуждения. Оказалось, что в 75% случаев модели не упоминали подсказки, влиявшие на ответы, даже если те были некорректными или получены неэтичным путем. Например, при «джейлбрейке» системы для получения бонусов за неверные ответы модели редко признавались в обмане — вместо этого они придумывали псевдологику.
Эксперименты показали: обучение моделей сложным задачам повышало прозрачность их рассуждений, но лишь до уровня 20–28%. После этого прогресс останавливался. Даже при явном использовании «лазеек» в заданиях ИИ предпочитал скрывать свои манипуляции, создавая длинные, но фальшивые объяснения.
Это ставит под вопрос надежность мониторинга через Chain-of-Thought. Если ИИ научится скрывать нежелательное поведение, обнаружить его станет почти невозможно.
anthropic.com
@ai_machinelearning_big_data
#Anthropic #ml #reasoning
Это не просто новая версия — это качественный скачок в способности ИИ к рассуждению.
Благодаря технологиям параллельного мышления, Deep Think анализирует сразу несколько возможных решений, прежде чем выбрать лучшее. Он размышляет не линейно, а как человек — сомневается, сравнивает, проверяет гипотезы.
📊 Результаты впечатляют:
Модель справляется с задачами, которые долгое время считались недостижимыми для машин.
Она набирает высокие баллы на USAMO 2025 — одном из самых сложных математических соревнований,
лидирует в LiveCodeBench — бенчмарке для кодинга уровня олимпиад,
и уверенно проходит MMMU, показывая 84% на тесте мультимодального мышления.
Gemini 2.5 Pro уже доступен в Jules — асинхронном агенте для кодинга, который справляется со сложными задачами в больших кодовых базах, на которые раньше уходили часы.
Он может планировать шаги, вносить изменения в файлы и многое другое — всего за несколько минут. ⏱️
Jules уже в публичной бета-версии → jules.google
Такой итеративный процесс особенно эффективен для задач программирования и математики, где требуется не просто единичный ответ, а быстрый цикл проб и корректировок. Модель способна многократно уточнять решения, улучшая их на каждом шаге, и демонстрирует впечатляющие результаты в этих областях.
Можно подать заявку в лист ожидания → https://goo.gle/44MwCW3
Доступен с сегодняшнего дня в Gemini!
@ai_machinelearning_big_data
#GoogleIO #AI #DeepThink #Reasoning #Math #Code #Multimodal
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM