✔ Google Research выпустили новую версию TimesFM-2.0 (jax + pytorch)
Это предварительно обученная модель для прогнозирования временных рядов .
Новая версия работает в показывает улучшение производительности на 25 %, чем v1.0 на различных бенчмарках, при этом имеет в 4 раза большую максимальную длину контекста.
TimesFM-2.0 возглавляет таблицу лидеров GIFT-Eval в метриках вероятностного прогнозирования.
▪Hf
▪Paper
▪Google Research blog
▪GitHub
@ai_machinelearning_big_data
#google #Timeseriesforecasting #timesFM #прогнозированиевременныхрядов
Это предварительно обученная модель для прогнозирования временных рядов .
Новая версия работает в показывает улучшение производительности на 25 %, чем v1.0 на различных бенчмарках, при этом имеет в 4 раза большую максимальную длину контекста.
TimesFM-2.0 возглавляет таблицу лидеров GIFT-Eval в метриках вероятностного прогнозирования.
▪Hf
▪Paper
▪Google Research blog
▪GitHub
@ai_machinelearning_big_data
#google #Timeseriesforecasting #timesFM #прогнозированиевременныхрядов
👍47🔥20❤3🥰3😁1
Свежее руководство по обучению с подкреплением, которое очень подробно объясняет всю теорию и детали реализации каждого алгоритма в этой области со множеством примеров и кодом.
Наслаждайтесь чтением)
📌 Читать
@ai_machinelearning_big_data
#ml #reinforcementlearning #rl #guide
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤61👍36🔥12👏1👾1
🔥 Sky-T1-32B-Preview 32B - 450$ - это все, что вам нужно, чтобы обучить свою собственную O1 🌟
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
2🔥78👍20❤10❤🔥4👾2
💰 Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget
Вышел официальный код и чекпоинты для MicroDiffusion от Sony.
Советую прочитать статью, в ней авторы подробно рассказывают о том, как они обучили модель уровня SD1 (MicroDiT) за $1890, используя диффузионный трансформер с MoE и наборы реальных+синтетических данных на 37M.
Теперь любой желающий может обучить модель Stable Diffusion v1/v2-уровня с нуля всего за 2,5 дня, используя 8 графических процессоров H100 (стоимостью < $2000)
Здесь можно посмотреть конфигурацию обучения для каждого этапа.
▪Paper: https://arxiv.org/abs/2407.15811v1
▪Github: https://github.com/SonyResearch/micro_diffusion
▪HF: https://huggingface.co/VSehwag24/MicroDiT
▪Dataset: https://github.com/SonyResearch/micro_diffusion/blob/main/micro_diffusion/datasets/README.md
@ai_machinelearning_big_data
#stablediffusion #guide #sd #ml #sony
Вышел официальный код и чекпоинты для MicroDiffusion от Sony.
Советую прочитать статью, в ней авторы подробно рассказывают о том, как они обучили модель уровня SD1 (MicroDiT) за $1890, используя диффузионный трансформер с MoE и наборы реальных+синтетических данных на 37M.
Теперь любой желающий может обучить модель Stable Diffusion v1/v2-уровня с нуля всего за 2,5 дня, используя 8 графических процессоров H100 (стоимостью < $2000)
Здесь можно посмотреть конфигурацию обучения для каждого этапа.
▪Paper: https://arxiv.org/abs/2407.15811v1
▪Github: https://github.com/SonyResearch/micro_diffusion
▪HF: https://huggingface.co/VSehwag24/MicroDiT
▪Dataset: https://github.com/SonyResearch/micro_diffusion/blob/main/micro_diffusion/datasets/README.md
@ai_machinelearning_big_data
#stablediffusion #guide #sd #ml #sony
❤50🔥44👍20🫡2🥱1
Kyutai labs выпустили Helium-1 Preview, 2B многоязычный LLM для edge девайсов и мобильных устройств.
Модель, обучена на 2,5 Т токенов и превосходит Qwen 2.5 1.5B🔥
> Превосходит/сопоставим с Owen 1.5B, Gemma 2B и Llama 3B
> обучен на 2.5T токенов с размером контекста 4096
> использует дистилляцию на уровне 7B модели
> разработчики планируют добавить больше языков, выпустить полную версию
> открытый код
🤗 HF: https://huggingface.co/kyutai/helium-1-preview-2b
@ai_machinelearning_big_data
#Helium #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32❤14🔥8❤🔥1🤨1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Mistral выпустила новую модель, специально разработанную для по Кодина с ИИ.
Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥
Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.
Размер окна контекста увеличен до 256 тысяч токенов.
Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.
А если вам нужна дополнительная информация, то вот официальный блог Mistral.
https://mistral.ai/news/codestral-2501/
@ai_machinelearning_big_data
#mistral #llm #ml #Codestral
Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥
Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.
Размер окна контекста увеличен до 256 тысяч токенов.
Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.
А если вам нужна дополнительная информация, то вот официальный блог Mistral.
https://mistral.ai/news/codestral-2501/
@ai_machinelearning_big_data
#mistral #llm #ml #Codestral
🔥68👍29❤9🥰3