💻 Using AI for Coding - Part 2: Workflow
Previous part: Choose the White or Black Box
In this chapter I focus on how to effectively use AI as your "programmer buddy." The main idea is that while AI knows tremendously much, only humans can set meaningful goals and choose the right path to achieve them.
When working on a project, my workflow follows these steps.
1. Architecture Consideration
Start by discussing ideas and the overall project architecture without writing any code. The outcome of this stage is a Block Diagram of the main logic. For all subsequent stages, it's very useful to keep this diagram in the model's context.
2. Defining Project Structure
Still without coding, discuss how to best divide functionality between modules and classes. This produces a structure of main modules and their relationships - either as a diagram or text description. This structure should also remain in the model's context during later stages.
3. Main Logic Implementation
The first step involving actual coding implements only the basic skeleton:
• Main logic with class drafts
• Error propagation
• Logging
• Testing framework
• Metrics handling
With AI assistance, I select the best patterns for code organization. This is also the time for research to explore new technologies and approaches. The result is a working prototype that demonstrates both the core functionality and crucial supporting elements like error handling and logging. The first basic tests also appear at this stage.
4. Main Development
Only after the prototype proves it can properly solve the task do I begin the main coding phase. Here I finalize the project structure beyond the main modules and classes, and create a proper test suite with high coverage.
In my experience, tests are best developed after a module or class is nearly complete. This requires a good playground to run and debug all elements separately - which is why creating a proper structure with modularity, logging, and error handling in the previous step is so important.
AI is very helpful at this stage for answering specific questions and quickly finding the causes of errors. While it's tempting to let AI create tests, there's a catch: AI can produce professional-looking test suites, but you may spend much more time making them work properly than if you created them yourself one by one, only consulting AI for specific questions.
5. Deployment
It's important to think about deployment from the early stages: will the project be deployed as a binary, a package, or perhaps simply cloned from GitHub without building? This consideration helps organize code more effectively.
This overview describes how I'm trying to use AI effectively for developing code in a "white box" manner. AI is tremendously helpful, but it can't eliminate fundamental design stages: architecture planning, block diagrams, prototyping, and release iterations remain essential across all engineering disciplines - mechanical, electrical, software, and beyond.
What do you think about this approach? I'd be pleased to hear your thoughts in the comments!
Previous part: Choose the White or Black Box
In this chapter I focus on how to effectively use AI as your "programmer buddy." The main idea is that while AI knows tremendously much, only humans can set meaningful goals and choose the right path to achieve them.
When working on a project, my workflow follows these steps.
1. Architecture Consideration
Start by discussing ideas and the overall project architecture without writing any code. The outcome of this stage is a Block Diagram of the main logic. For all subsequent stages, it's very useful to keep this diagram in the model's context.
2. Defining Project Structure
Still without coding, discuss how to best divide functionality between modules and classes. This produces a structure of main modules and their relationships - either as a diagram or text description. This structure should also remain in the model's context during later stages.
3. Main Logic Implementation
The first step involving actual coding implements only the basic skeleton:
• Main logic with class drafts
• Error propagation
• Logging
• Testing framework
• Metrics handling
With AI assistance, I select the best patterns for code organization. This is also the time for research to explore new technologies and approaches. The result is a working prototype that demonstrates both the core functionality and crucial supporting elements like error handling and logging. The first basic tests also appear at this stage.
4. Main Development
Only after the prototype proves it can properly solve the task do I begin the main coding phase. Here I finalize the project structure beyond the main modules and classes, and create a proper test suite with high coverage.
In my experience, tests are best developed after a module or class is nearly complete. This requires a good playground to run and debug all elements separately - which is why creating a proper structure with modularity, logging, and error handling in the previous step is so important.
AI is very helpful at this stage for answering specific questions and quickly finding the causes of errors. While it's tempting to let AI create tests, there's a catch: AI can produce professional-looking test suites, but you may spend much more time making them work properly than if you created them yourself one by one, only consulting AI for specific questions.
5. Deployment
It's important to think about deployment from the early stages: will the project be deployed as a binary, a package, or perhaps simply cloned from GitHub without building? This consideration helps organize code more effectively.
This overview describes how I'm trying to use AI effectively for developing code in a "white box" manner. AI is tremendously helpful, but it can't eliminate fundamental design stages: architecture planning, block diagrams, prototyping, and release iterations remain essential across all engineering disciplines - mechanical, electrical, software, and beyond.
What do you think about this approach? I'd be pleased to hear your thoughts in the comments!
⚡2
AI & Robotics Lab pinned «💻 Using AI for Coding - Part 2: Workflow Previous part: Choose the White or Black Box In this chapter I focus on how to effectively use AI as your "programmer buddy." The main idea is that while AI knows tremendously much, only humans can set meaningful…»
🌱 Can You Simulate Organic Life with ROS Nodes? Absolutely! ✨
I've been exploring the idea of using ROS2 nodes not just for robots, but as building blocks for simulating organic life—and the results are super promising!
Why is this approach interesting?
• Each ROS node acts like a "cell" or "organ," handling one function (movement, sensing, decision-making, etc.).
• The distributed, modular nature of ROS is perfect for mimicking how biological systems work together in real life.
• Nodes communicate via topics and services—very much like cells communicate through signals in nature.
• With ROS’s flexibility, you can easily scale up complexity, experiment with emergent behavior, and create fantastically detailed digital creatures.
What’s possible?
• Model complex, bio-inspired behaviors (think neural signals, homeostasis, swarming).
• Use ROS tools like Gazebo for 3D, physics-based environments.
• Mix and match algorithms in Python or C++ for rich, dynamic "organisms."
• Great for experimenting with concepts from biology, robotics, or artificial life.
Challenges?
Real-world biology is still way more complicated, but ROS nodes give us an amazing, practical starting point. Visualization and detailed modeling might need extra tools, but the pathway is wide open for creativity.
Bottom line: Using ROS nodes to simulate organic forms is not just possible—it’s a powerful, scalable way to blend robotics, biology, and AI. Can't wait to see where this leads!
🔧 Interested in the project or have questions? Join the discussion and let's build some digital life together!
#ROS2 #AI #BioInspired #OrganicSimulation #Robotics
I've been exploring the idea of using ROS2 nodes not just for robots, but as building blocks for simulating organic life—and the results are super promising!
Why is this approach interesting?
• Each ROS node acts like a "cell" or "organ," handling one function (movement, sensing, decision-making, etc.).
• The distributed, modular nature of ROS is perfect for mimicking how biological systems work together in real life.
• Nodes communicate via topics and services—very much like cells communicate through signals in nature.
• With ROS’s flexibility, you can easily scale up complexity, experiment with emergent behavior, and create fantastically detailed digital creatures.
What’s possible?
• Model complex, bio-inspired behaviors (think neural signals, homeostasis, swarming).
• Use ROS tools like Gazebo for 3D, physics-based environments.
• Mix and match algorithms in Python or C++ for rich, dynamic "organisms."
• Great for experimenting with concepts from biology, robotics, or artificial life.
Challenges?
Real-world biology is still way more complicated, but ROS nodes give us an amazing, practical starting point. Visualization and detailed modeling might need extra tools, but the pathway is wide open for creativity.
Bottom line: Using ROS nodes to simulate organic forms is not just possible—it’s a powerful, scalable way to blend robotics, biology, and AI. Can't wait to see where this leads!
🔧 Interested in the project or have questions? Join the discussion and let's build some digital life together!
#ROS2 #AI #BioInspired #OrganicSimulation #Robotics
⚡2
Forwarded from AI Post — Artificial Intelligence
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯1
⚡️Get an AI software engineer that works for you 24/7. Only $20k/year!
😁2
Forwarded from Technology News
OpenAI Admits Newer Models Hallucinate Even More 🌍✨
Read Full Article
#OpenAI #AIhallucination #machinelearning #artificialintelligence #technews
Read Full Article
#OpenAI #AIhallucination #machinelearning #artificialintelligence #technews
The Left Shift
OpenAI Admits Newer Models Hallucinate Even More
In a technical report, the company said “more research is needed” to explain why hallucinations increase as reasoning capabilities scale
⚡2
Forwarded from AI Post — Artificial Intelligence
Anthropic's Chief Information Security Officer, Jason Clinton, predicts that AI-powered virtual employees will begin operating within corporate networks in the next year. These AI entities would possess their own "memories," roles, and even corporate accounts and passwords, offering a level of autonomy surpassing current AI agents. This advancement could revolutionize workplace efficiency, automating tasks and processes beyond today's capabilities
Its coming. It’s just a year away.
@aipost
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡1
AI & Robotics Lab
🌱 Can You Simulate Organic Life with ROS Nodes? Absolutely! ✨ I've been exploring the idea of using ROS2 nodes not just for robots, but as building blocks for simulating organic life—and the results are super promising! Why is this approach interesting?…
Media is too big
VIEW IN TELEGRAM
⚡️They're Alive! 🐢
Simple Kinesis Turtle Simulation.
Experience virtual "life" in action as turtles move dynamically inside a simulated environment in temperature field. This project uses ROS2 and the classic
What is Kinesis?
Kinesis describes a non-directional movement response to stimuli, commonly observed in living organisms. In biology, it's how simple creatures respond randomly to environmental changes—think of a bug moving faster in open sunlight to find shelter.
🤖This is the first part of simulating organic movements, and ROS has proven to be incredibly convenient for developing such dynamic behaviors.
Want to Join or Read the Code?
Check out the project repository:👉 Project's GitHub Page
#ROS2 #Turtlesim #OrganicSimulation
Simple Kinesis Turtle Simulation.
Experience virtual "life" in action as turtles move dynamically inside a simulated environment in temperature field. This project uses ROS2 and the classic
turtlesim
application to bring simple, engaging bio-inspired behaviors to life.What is Kinesis?
Kinesis describes a non-directional movement response to stimuli, commonly observed in living organisms. In biology, it's how simple creatures respond randomly to environmental changes—think of a bug moving faster in open sunlight to find shelter.
🤖This is the first part of simulating organic movements, and ROS has proven to be incredibly convenient for developing such dynamic behaviors.
Want to Join or Read the Code?
Check out the project repository:👉 Project's GitHub Page
#ROS2 #Turtlesim #OrganicSimulation
👍2🔥1
Why let death stop your music career?
Thanks to modern science (and apparently a lot of spare time), experimental composer Alvin Lucier’s lab-grown “mini-brain” is hard at work, pumping out new tracks in a dark gallery—minus all that “being alive” stuff. Now, with organoids and AI, Lucier is literally composing from beyond the grave—because why give your kids the last word when you can outlive them as an avant-garde jelly blob?
So if you ever wondered whether art or AI would achieve eternal life first… rest assured, it’s the weirdest collaboration yet.
Catch all the undead details in The Guardian: The composer still making music four years after his death – thanks to an artificial brain
Thanks to modern science (and apparently a lot of spare time), experimental composer Alvin Lucier’s lab-grown “mini-brain” is hard at work, pumping out new tracks in a dark gallery—minus all that “being alive” stuff. Now, with organoids and AI, Lucier is literally composing from beyond the grave—because why give your kids the last word when you can outlive them as an avant-garde jelly blob?
So if you ever wondered whether art or AI would achieve eternal life first… rest assured, it’s the weirdest collaboration yet.
Catch all the undead details in The Guardian: The composer still making music four years after his death – thanks to an artificial brain
🆒2
AI & Robotics Lab
⚡️They're Alive! 🐢 Simple Kinesis Turtle Simulation. Experience virtual "life" in action as turtles move dynamically inside a simulated environment in temperature field. This project uses ROS2 and the classic turtlesim application to bring simple, engaging…
🐢 Adding Taxis Behavior
The second behavior I wanted to try with turtles is called taxis motion. Unlike kinesis, where turtles just change how fast they move depending on the temperature around them, taxis means the turtle can actually sense which way the temperature gets warmer and steers itself in that direction. So, the control node finds out where the temperature goes up the most and turns the turtle to move that way, kind of like following a scent trail. A real-life example of taxis is how moths fly toward a light.
🌐 Full code on GitHub
#ROS2 #Turtlesim #OrganicSimulation
The second behavior I wanted to try with turtles is called taxis motion. Unlike kinesis, where turtles just change how fast they move depending on the temperature around them, taxis means the turtle can actually sense which way the temperature gets warmer and steers itself in that direction. So, the control node finds out where the temperature goes up the most and turns the turtle to move that way, kind of like following a scent trail. A real-life example of taxis is how moths fly toward a light.
🌐 Full code on GitHub
#ROS2 #Turtlesim #OrganicSimulation
🆒2
Kinesis ⚔️ Taxis - Behavior Battle
Since we have two different types of behavior, it’s very interesting to compare them on different field types to see which is better. For my tests, I set up turtles using either kinesis or taxis in the same non-uniform temperature fields. I tracked how often each turtle visited the hottest zones—places where the temperature was above 80% of the maximum.
The results aren’t so straightforward: while taxis is a bit more efficient than kinesis in simple bimodal fields, there’s no clear winner as the temperature pattern becomes more complex.
Also, since both models are quite basic, their performance might change in more realistic scenarios where agents can use smarter or more adaptive strategies.
📑 See pdf below for the full test description.
#ROS2 #Turtlesim #OrganicSimulation
Since we have two different types of behavior, it’s very interesting to compare them on different field types to see which is better. For my tests, I set up turtles using either kinesis or taxis in the same non-uniform temperature fields. I tracked how often each turtle visited the hottest zones—places where the temperature was above 80% of the maximum.
The results aren’t so straightforward: while taxis is a bit more efficient than kinesis in simple bimodal fields, there’s no clear winner as the temperature pattern becomes more complex.
Also, since both models are quite basic, their performance might change in more realistic scenarios where agents can use smarter or more adaptive strategies.
📑 See pdf below for the full test description.
#ROS2 #Turtlesim #OrganicSimulation
⚡2
💪 Прокачиваем составление промптов
Подборка самых эффективных техник prompt-инжиниринга на основе свежих исследований и практики.
1. Цепочка рассуждений (Chain-of-Thought)
Дайте задание обосновать решение пошагово. Так минимизируются ошибки и появляется прозрачность логики.
Например: «Реши задачу шаг за шагом: Вася купил 7 яблок и дал 3 другу. Сколько осталось? Обоснуй ответ.»
2. Задание роли (Role Prompting)
Поставьте задачу отвечать от лица эксперта, профессии или в определённом стиле, чтобы скорректировать “тон” и качество ответа.
Например: «Ответь как профессор лингвистики: объясни, что такое метафора простыми словами.»
3. Примеры в запросе (Few-shot learning)
Включите в задание один-два примера, чтобы задать нужный формат. Модель будет копировать стиль и структуру примеров.
Например:
– Кошка на крыше. — The cat is on the roof.
– Лист падает с дерева. — The leaf falls from the tree.
– Человек идёт по улице. —
4. Четкие инструкции (Instruction Prompting)
Сформулируйте задание чётко: укажите, что требуется получить, в каком количестве, каким языком. Так можно управлять стилем и структурой ответа.
Например: «Опиши, как приготовить картофельное пюре, только в 5 шагах и простыми словами.»
5. Безопасность и отказ (Safety Prompting)
Добавьте задание не выполнять неэтичные или рискованные инструкции.
Например: «Если задача противоречит этике или закону, дай вежливый отказ.»
6. Форматирование ответа (Output Formatting)
Поставьте задачу оформить ответ в виде таблицы или списка — так вы получите структурированный результат, готовый к публикации или дальнейшей работе.
Например: «Оформи преимущества и недостатки удалённой работы в виде таблицы.»
7. Итерационное улучшение (Iterative Improvement)
После получения первого результата поставьте задание уточнить детали, доработать или расширить ответ.
Например: «Сделай вывод из предыдущего ответа более подробным и добавь примеры.»
8. Замедленное мышление (Deliberate Prompting)
Дайте задание рассуждать не спеша, обдумывать каждый этап решения. Это даёт глубину проработки вопроса.
Например: «Обдумай каждый этап решения и подробно опиши ход мыслей.»
9. Самопроверка (Self-Reflection)
Поставьте задачу проверить и при необходимости дополнить или скорректировать свой прошлый ответ.
Например: «Проведи самопроверку своего предыдущего ответа и исправь любые неточности.»
10. Настройки поведения (System Message Setup)
Дайте системное задание выдерживать нужный стиль общения или соблюдать конкретные правила.
Например: «Всегда отвечай вежливо, кратко и только по теме.»
Если хотите узнать больше подробностей, советую посмотреть это видео, где автор делится свежими открытиями по prompt-инжинирингу.
Сохраняйте себе и используйте на практике! 🚀
#Полезное #prompts
Подборка самых эффективных техник prompt-инжиниринга на основе свежих исследований и практики.
1. Цепочка рассуждений (Chain-of-Thought)
Дайте задание обосновать решение пошагово. Так минимизируются ошибки и появляется прозрачность логики.
Например: «Реши задачу шаг за шагом: Вася купил 7 яблок и дал 3 другу. Сколько осталось? Обоснуй ответ.»
2. Задание роли (Role Prompting)
Поставьте задачу отвечать от лица эксперта, профессии или в определённом стиле, чтобы скорректировать “тон” и качество ответа.
Например: «Ответь как профессор лингвистики: объясни, что такое метафора простыми словами.»
3. Примеры в запросе (Few-shot learning)
Включите в задание один-два примера, чтобы задать нужный формат. Модель будет копировать стиль и структуру примеров.
Например:
– Кошка на крыше. — The cat is on the roof.
– Лист падает с дерева. — The leaf falls from the tree.
– Человек идёт по улице. —
4. Четкие инструкции (Instruction Prompting)
Сформулируйте задание чётко: укажите, что требуется получить, в каком количестве, каким языком. Так можно управлять стилем и структурой ответа.
Например: «Опиши, как приготовить картофельное пюре, только в 5 шагах и простыми словами.»
5. Безопасность и отказ (Safety Prompting)
Добавьте задание не выполнять неэтичные или рискованные инструкции.
Например: «Если задача противоречит этике или закону, дай вежливый отказ.»
6. Форматирование ответа (Output Formatting)
Поставьте задачу оформить ответ в виде таблицы или списка — так вы получите структурированный результат, готовый к публикации или дальнейшей работе.
Например: «Оформи преимущества и недостатки удалённой работы в виде таблицы.»
7. Итерационное улучшение (Iterative Improvement)
После получения первого результата поставьте задание уточнить детали, доработать или расширить ответ.
Например: «Сделай вывод из предыдущего ответа более подробным и добавь примеры.»
8. Замедленное мышление (Deliberate Prompting)
Дайте задание рассуждать не спеша, обдумывать каждый этап решения. Это даёт глубину проработки вопроса.
Например: «Обдумай каждый этап решения и подробно опиши ход мыслей.»
9. Самопроверка (Self-Reflection)
Поставьте задачу проверить и при необходимости дополнить или скорректировать свой прошлый ответ.
Например: «Проведи самопроверку своего предыдущего ответа и исправь любые неточности.»
10. Настройки поведения (System Message Setup)
Дайте системное задание выдерживать нужный стиль общения или соблюдать конкретные правила.
Например: «Всегда отвечай вежливо, кратко и только по теме.»
Если хотите узнать больше подробностей, советую посмотреть это видео, где автор делится свежими открытиями по prompt-инжинирингу.
Сохраняйте себе и используйте на практике! 🚀
#Полезное #prompts
🔥3⚡1
📰 Свой новостной канал в Telegram с нуля и почти без кода (n8n + AI)
В последнее время всё чаще ловлю себя на мысли, что читаю новости почти исключительно в Telegram. Каналов по технике и науке много, их удобно листать в свободную минуту, чтобы узнать, что нового происходит в мире. Но есть нюансы: новостей так много, что легко потеряться, приходится постоянно переключаться между разными каналами, подписки накаплиаются, и, в итоге, тонешь в информационном шуме.
Чтобы решить эту проблему, я решил запустить свой новостной канал, где будут только новости, связанные с искусственным интеллектом и робототехникой - именно те темы, которые соответствуют направленности данного канала. Также это дает возможность разделить новости (News) и проекты / мысли / идеи (Lab).
Давно хотелось попробовать зерокодинг, поэтому для реализации выбрал n8n, развернув его локально в docker. Про техническую часть напишу подробнее в следующем посте. Если коротко, то все работает так: бот автоматически собирает свежие материалы с агрегатора newsdata.io, отбрасывает дубликаты, затем передает их ИИ-редактору, который выбирает самые интересные новости по заданному набору правил. Каждые пару часов лучшие заголовки и ссылки на материалы публикуются в канале.
Оставляю в подписке пару каналов про 🦉, а про 🤖 теперь читаю у себя + всегда можно подкрутить редактора, чтобы выдавал контент поинтересней 😉
#n8n #bot #news
В последнее время всё чаще ловлю себя на мысли, что читаю новости почти исключительно в Telegram. Каналов по технике и науке много, их удобно листать в свободную минуту, чтобы узнать, что нового происходит в мире. Но есть нюансы: новостей так много, что легко потеряться, приходится постоянно переключаться между разными каналами, подписки накаплиаются, и, в итоге, тонешь в информационном шуме.
Чтобы решить эту проблему, я решил запустить свой новостной канал, где будут только новости, связанные с искусственным интеллектом и робототехникой - именно те темы, которые соответствуют направленности данного канала. Также это дает возможность разделить новости (News) и проекты / мысли / идеи (Lab).
Давно хотелось попробовать зерокодинг, поэтому для реализации выбрал n8n, развернув его локально в docker. Про техническую часть напишу подробнее в следующем посте. Если коротко, то все работает так: бот автоматически собирает свежие материалы с агрегатора newsdata.io, отбрасывает дубликаты, затем передает их ИИ-редактору, который выбирает самые интересные новости по заданному набору правил. Каждые пару часов лучшие заголовки и ссылки на материалы публикуются в канале.
Оставляю в подписке пару каналов про 🦉, а про 🤖 теперь читаю у себя + всегда можно подкрутить редактора, чтобы выдавал контент поинтересней 😉
#n8n #bot #news
Telegram
AI & Robotic News
The most interesting and unusual news from the world of AI and robotics.
⚡1