SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
@TutorialBTC
1.26K
subscribers
16.4K
photos
2.16K
videos
248
files
27.7K
links
#DTV
Não Confie. Verifique.
#DYOR
FONTES & PESQUISAS
tutorialbtc.npub.pro
📚
DESMISTIFICANDO
#P2P
Redes de Pagamento
#Hold
Poupança
#Node
Soberania
#Nostr
AntiCensura
#Opsec
Segurança
#Empreender
Negócio
#IA
Prompt
#LINUX
OS
♟
#Matrix
'Corrida dos ratos'
Download Telegram
Join
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
1.26K subscribers
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Additive and multiplicative persistence
The additive persistence of a
number
is related to iteratively casting out nines. Multiplicative persistence is analogous but more interesting.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_systems
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Golden ratio base
numbers
Positional
number
systems typically have a integer base, but irrational and even complex bases are possible. The golden ratio was the first irrational base.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Golden powers revisited
Powers of the golden ratio are nearly integers. This post explains why. Also, these integers are the sum of two Fibonacci
numbers
.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Multiples and powers mod 1
For any x, the behavior of multiples of x mod 1 is easy to classify. The powers of x mod 1 are more interesting. We give examples of different behavior.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Mathematica
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Powers of 3 + √2
How to calculate large powers of 3 + √2 numerically with bc and symbolically with Mathematica. Conjecture regarding the integer and irrational parts.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Moessner’s Magic
Moessner's Magic is a generalization of an ancient theorem that wasn't discovered until 1951.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Geometry
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Primitive Pythagorean triangles with the same area
You can find three primitive Pythagorean triangles with the same area, but what about four?
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Mathematica
#Number_theory
#SymPy
source
John D. Cook | Applied Mathematics Consulting
Time to factor big integers Python and Mathematica
Testing the time to factor big integers in Python with SymPy compared to Matheamtica
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Memory
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Prime
numbers
that are easy to remember
Memorable prime
numbers
with various
numbers
of digits. For example, if you need a five-digit prime, you could say 18181.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
American Flag Prime
A prime
number
that looks like a blackand-white image of an American flag when written in a block.
SATOSHI ° NOSTR ° AI LLM ML ° LINUX ° MESH ° BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Factoring Stencils
An ingenious device for factoring integers from the days before computers. A set of around 300 stencils could factor 9-digit
numbers
.