This media is not supported in your browser
VIEW IN TELEGRAM
🧠 The Markovian Thinker: Революция в обучении LLM
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru