This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Собери собственного человекоподобного робота!
OpenArm - это открытый проект гуманоидного робота, включающий всё необходимое для сборки, модификации и управления собственными роботизированными руками.
В комплект входят CAD-модели, прошивка, управляющее ПО и симуляторы, так что можно сразу перейти от идеи к реальному устройству.
Система поддерживает телеоперацию с обратной связью по усилию и гравитационную компенсацию, позволяя оператору управлять рукой естественно и точно.
💡 OpenArm интегрируется с MuJoCo и Isaac Sim, что позволяет тестировать управление в виртуальной среде перед запуском на железе.
Проект ориентирован на исследовательские лаборатории, стартапы и энтузиастов, желающих изучать манипуляцию и взаимодействие человека с роботом.
🔩 Можно собрать из набора деталей или заказать готовую сборку - цель OpenArm сделать робототехнику доступной и прозрачной для всех.
Разработкой занимается команда Enactic (Токио, Япония).
GitHub: https://github.com/enactic/OpenArm
@Python_Community_ru
OpenArm - это открытый проект гуманоидного робота, включающий всё необходимое для сборки, модификации и управления собственными роботизированными руками.
В комплект входят CAD-модели, прошивка, управляющее ПО и симуляторы, так что можно сразу перейти от идеи к реальному устройству.
Система поддерживает телеоперацию с обратной связью по усилию и гравитационную компенсацию, позволяя оператору управлять рукой естественно и точно.
💡 OpenArm интегрируется с MuJoCo и Isaac Sim, что позволяет тестировать управление в виртуальной среде перед запуском на железе.
Проект ориентирован на исследовательские лаборатории, стартапы и энтузиастов, желающих изучать манипуляцию и взаимодействие человека с роботом.
🔩 Можно собрать из набора деталей или заказать готовую сборку - цель OpenArm сделать робототехнику доступной и прозрачной для всех.
Разработкой занимается команда Enactic (Токио, Япония).
GitHub: https://github.com/enactic/OpenArm
@Python_Community_ru
🔥1
👩💻 FastMCP (https://github.com/jlowin/fastmcp) — Быстрый, Python-способ создания MCP-серверов!
🌟 Серверы Model Context Protocol (MCP) — это новый стандартизированный способ предоставления контекста и инструментов вашим LLM, а FastMCP делает создание серверов MCP простым и интуитивно понятным. Создавайте инструменты, предоставляйте ресурсы и определяйте подсказки с помощью чистого кода Python!
🔐 Лицензия: MIT
🖥 Github (https://github.com/jlowin/fastmcp)
@Python_Community_ru
🌟 Серверы Model Context Protocol (MCP) — это новый стандартизированный способ предоставления контекста и инструментов вашим LLM, а FastMCP делает создание серверов MCP простым и интуитивно понятным. Создавайте инструменты, предоставляйте ресурсы и определяйте подсказки с помощью чистого кода Python!
🔐 Лицензия: MIT
🖥 Github (https://github.com/jlowin/fastmcp)
@Python_Community_ru
🔥2
🤖 MimicKit: Алгоритмы имитации движений для тренировки контроллеров
MimicKit предлагает набор алгоритмов для имитации движений, включая DeepMimic и другие. Поддерживает обучение с использованием методов глубокого обучения и RL, таких как PPO и AWR. Идеально подходит для создания реалистичных анимаций.
🚀Основные моменты:
- Алгоритмы имитации движений и RL.
- Поддержка многопроцессорного и многопоточного обучения.
- Визуализация тренировочных данных и логов.
- Простая интеграция с IsaacGym.
📌 GitHub: https://github.com/xbpeng/MimicKit
#python
@Python_Community_ru
MimicKit предлагает набор алгоритмов для имитации движений, включая DeepMimic и другие. Поддерживает обучение с использованием методов глубокого обучения и RL, таких как PPO и AWR. Идеально подходит для создания реалистичных анимаций.
🚀Основные моменты:
- Алгоритмы имитации движений и RL.
- Поддержка многопроцессорного и многопоточного обучения.
- Визуализация тренировочных данных и логов.
- Простая интеграция с IsaacGym.
📌 GitHub: https://github.com/xbpeng/MimicKit
#python
@Python_Community_ru
🎧 Хотите превратить любую книгу в аудиокнигу?
Нашли бесплатную нейронку, которая за считанные секунды озвучит даже огромный роман.
✨ Возможности:
— Поддержка множества языков
— Реалистичные голоса от модели KokoroTTS
— Можно создать собственный голос, если готовые не подходят
— Простая установка без лишних заморочек
— Полностью open-source и бесплатный инструмент
🔗 Забираем на GitHub — и слушаем либимые книги 📚🎶
https://github.com/denizsafak/abogen
@Python_Community_ru
Нашли бесплатную нейронку, которая за считанные секунды озвучит даже огромный роман.
✨ Возможности:
— Поддержка множества языков
— Реалистичные голоса от модели KokoroTTS
— Можно создать собственный голос, если готовые не подходят
— Простая установка без лишних заморочек
— Полностью open-source и бесплатный инструмент
🔗 Забираем на GitHub — и слушаем либимые книги 📚🎶
https://github.com/denizsafak/abogen
@Python_Community_ru
🔥 Video2X (https://github.com/k4yt3x/video2x) — фреймворк с открытым исходным кодом, предназначенный для повышения разрешения видео и интерполяции кадров с использованием методов машинного обучения!
🌟 Изначально созданный в 2018 году на хакатоне Hack the Valley II, проект претерпел значительные изменения, и в версии 6.0.0 был полностью переписан на C/C++, что обеспечило более высокую производительность и эффективность. Video2X поддерживает кроссплатформенную работу на Windows и Linux, предоставляя пользователям возможность улучшать качество видео с помощью таких технологий, как Anime4K v4, RealESRGAN, RealCUGAN и RIFE.
💡 Основные возможности Video2X включают два режима работы: фильтрация (увеличение разрешения) и интерполяция кадров. Инструмент поддерживает различные модели и шейдеры, совместимые с MPV, а также обеспечивает обработку без необходимости в дополнительном дисковом пространстве, требуя только место для конечного результата.
🔐 Лицензия: AGPL-3.0
🖥 Github (https://github.com/k4yt3x/video2x)
@Python_Community_ru
🌟 Изначально созданный в 2018 году на хакатоне Hack the Valley II, проект претерпел значительные изменения, и в версии 6.0.0 был полностью переписан на C/C++, что обеспечило более высокую производительность и эффективность. Video2X поддерживает кроссплатформенную работу на Windows и Linux, предоставляя пользователям возможность улучшать качество видео с помощью таких технологий, как Anime4K v4, RealESRGAN, RealCUGAN и RIFE.
💡 Основные возможности Video2X включают два режима работы: фильтрация (увеличение разрешения) и интерполяция кадров. Инструмент поддерживает различные модели и шейдеры, совместимые с MPV, а также обеспечивает обработку без необходимости в дополнительном дисковом пространстве, требуя только место для конечного результата.
🔐 Лицензия: AGPL-3.0
🖥 Github (https://github.com/k4yt3x/video2x)
@Python_Community_ru
👩💻 django-cors-headers (https://github.com/adamchainz/django-cors-headers) — Django-приложение для обработки заголовков Cross-Origin Resource Sharing (CORS)!
🌟 Этот инструмент позволяет вашему Django-приложению принимать запросы из браузеров, отправленные с других доменов. Это особенно полезно для API-серверов или приложений, которые обслуживают фронтенд и бэкенд с разных доменов или портов.
🌟 Инструмент позволяет гибко управлять настройками CORS, включая поддержку конкретных методов, заголовков и настроек безопасности. Например, вы можете настроить разрешение только для определённых доменов или включить временный доступ для локальной разработки. Однако важно понимать риски, связанные с CORS, поскольку неправильная конфигурация может открыть доступ к вашим данным для нежелательных источников.
🔐 Лицензия: MIT
🖥 Github (https://github.com/adamchainz/django-cors-headers)
@Python_Community_ru
🌟 Этот инструмент позволяет вашему Django-приложению принимать запросы из браузеров, отправленные с других доменов. Это особенно полезно для API-серверов или приложений, которые обслуживают фронтенд и бэкенд с разных доменов или портов.
🌟 Инструмент позволяет гибко управлять настройками CORS, включая поддержку конкретных методов, заголовков и настроек безопасности. Например, вы можете настроить разрешение только для определённых доменов или включить временный доступ для локальной разработки. Однако важно понимать риски, связанные с CORS, поскольку неправильная конфигурация может открыть доступ к вашим данным для нежелательных источников.
🔐 Лицензия: MIT
🖥 Github (https://github.com/adamchainz/django-cors-headers)
@Python_Community_ru
🧠 Human3R: Инновации в 3D-моделировании человека
Human3R предлагает эффективный подход к 3D-восстановлению человека с использованием единой модели и этапа. Система позволяет проводить обучение всего за один день на одном GPU, обеспечивая высокую производительность и простоту в использовании.
🚀 Основные моменты:
- Одноэтапное восстановление 3D-моделей.
- Быстрое обучение на одном GPU.
- Поддержка различных форматов ввода.
- Интуитивно понятный интерфейс для визуализации результатов.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/fanegg/Human3R
Human3R предлагает эффективный подход к 3D-восстановлению человека с использованием единой модели и этапа. Система позволяет проводить обучение всего за один день на одном GPU, обеспечивая высокую производительность и простоту в использовании.
🚀 Основные моменты:
- Одноэтапное восстановление 3D-моделей.
- Быстрое обучение на одном GPU.
- Поддержка различных форматов ввода.
- Интуитивно понятный интерфейс для визуализации результатов.
📌 GitHub:
#python
@Python_Community_ru
https://github.com/fanegg/Human3R
GitHub
GitHub - fanegg/Human3R: An unified model for 4D human-scene reconstruction
An unified model for 4D human-scene reconstruction - fanegg/Human3R
🖥 Python 3.15 - что нового
Вышла новая версия Python 3.15, и в ней несколько заметных обновлений, особенно для тех, кто работает с производительностью и отладкой.
🔧 Главные изменения:
- Добавлен новый модуль profiling.sampling — инструмент статистического профилирования,
который позволяет анализировать производительность кода без пауз и overhead’а.
- Оптимизирована стандартная библиотека: многие функции теперь работают быстрее.
- Улучшен сборщик мусора и работа с памятью.
- Расширена поддержка аннотаций типов.
- Повышена стабильность и снижена нагрузка на интерпретатор при многопоточности.
📈 Зачем обновляться:
- Новый профайлер поможет находить узкие места в коде без остановки приложения.
- Версия стабильна и готова для продакшена.
- Меньше задержек, меньше overhead, лучше работа с async-кодом и большими данными.
Подробнее: https://docs.python.org/3.15/whatsnew/3.15.html
#Python #Update #Performance #Developers
@Python_Community_ru
Вышла новая версия Python 3.15, и в ней несколько заметных обновлений, особенно для тех, кто работает с производительностью и отладкой.
🔧 Главные изменения:
- Добавлен новый модуль profiling.sampling — инструмент статистического профилирования,
который позволяет анализировать производительность кода без пауз и overhead’а.
- Оптимизирована стандартная библиотека: многие функции теперь работают быстрее.
- Улучшен сборщик мусора и работа с памятью.
- Расширена поддержка аннотаций типов.
- Повышена стабильность и снижена нагрузка на интерпретатор при многопоточности.
📈 Зачем обновляться:
- Новый профайлер поможет находить узкие места в коде без остановки приложения.
- Версия стабильна и готова для продакшена.
- Меньше задержек, меньше overhead, лучше работа с async-кодом и большими данными.
Подробнее: https://docs.python.org/3.15/whatsnew/3.15.html
#Python #Update #Performance #Developers
@Python_Community_ru
👍4🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 The Markovian Thinker: Революция в обучении LLM
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru
The Markovian Thinker предлагает новый подход к обучению языковых моделей с использованием фиксированного размера состояния, что снижает вычислительные затраты. Метод Delethink разбивает генерацию на фиксированные части, позволяя модели эффективно продвигать мысли, сохраняя контекст.
🚀Основные моменты:
- Новый парадигма "Марковское мышление" для LLM.
- Метод Delethink использует фиксированные размеры контекста.
- Сравнение с LongCoT показывает лучшие результаты при меньших затратах.
- Поддержка масштабирования до 96K токенов.
- Применение в современных LLM, таких как GPT-OSS и Qwen3.
📌 GitHub: https://github.com/McGill-NLP/the-markovian-thinker
@Python_Community_ru
🤖 Dexter: Автономный финансовый исследователь
Dexter - это интеллектуальный агент, который анализирует финансовые данные, планирует задачи и учится на ходу. Он превращает сложные финансовые вопросы в четкие исследовательские планы, используя актуальные рыночные данные и самопроверку для достижения точных ответов.
🚀Основные моменты:
- Автоматическое планирование задач для сложных запросов
- Автономное выполнение с использованием финансовых инструментов
- Самопроверка и итерации для повышения точности
- Доступ к актуальным финансовым данным
- Защита от бесконечного выполнения задач
📌 GitHub: https://github.com/virattt/dexter
@Python_Community_ru
Dexter - это интеллектуальный агент, который анализирует финансовые данные, планирует задачи и учится на ходу. Он превращает сложные финансовые вопросы в четкие исследовательские планы, используя актуальные рыночные данные и самопроверку для достижения точных ответов.
🚀Основные моменты:
- Автоматическое планирование задач для сложных запросов
- Автономное выполнение с использованием финансовых инструментов
- Самопроверка и итерации для повышения точности
- Доступ к актуальным финансовым данным
- Защита от бесконечного выполнения задач
📌 GitHub: https://github.com/virattt/dexter
@Python_Community_ru
🖥 Microsoft представила новый цикл лекций по Python и искусственному интеллекту.
В курсе собрали актуальную информацию по коллегу на Python и создании продвинутых ИИ помощников, основанных.
• Содержание: Курс включает 9 лекций, дополненных видеоматериалами, подробными презентациями и примерами кода. Обучение разработке ИИ-агентов доступно даже для новичков в кодировании.
• Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
Идеальный план на выходные - углубиться в ИИ!
https://github.com/orgs/azure-ai-foundry/discussions/166
@Python_Community_ru
В курсе собрали актуальную информацию по коллегу на Python и создании продвинутых ИИ помощников, основанных.
• Содержание: Курс включает 9 лекций, дополненных видеоматериалами, подробными презентациями и примерами кода. Обучение разработке ИИ-агентов доступно даже для новичков в кодировании.
• Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
Идеальный план на выходные - углубиться в ИИ!
https://github.com/orgs/azure-ai-foundry/discussions/166
@Python_Community_ru