Python Community
12.6K subscribers
1.29K photos
56 videos
15 files
791 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🆕 OctoBot — мощный криптовалютный торговый бот с открытым исходным кодом!

OctoBot — это:
- Открытый и настраиваемый крипто-торговый бот от Drakkar-Software
- Интерфейс конфигурации и система *tentacles* (модули-«щупальца») для гибкого построения стратегий — от технического анализа до интеграции внешних данных
- Поддержка Spot и Futures, торговля на более чем 15 биржах через библиотеку ccxt
- Возможности: создание и тестирование стратегий, оптимизация, торговля корзиной криптовалют, использование AI-инструментов и backtesting

Архитектура проекта:
- OctoBot — ядро с backtesting и стратегическим менеджментом
- OctoBot-Tentacles — модули для стратегий, нотификаций, внешних данных
- OctoBot-Trading — взаимодействие с биржами через ccxt
- Дополнительные пакеты: OctoBot-Services, OctoBot-Backtesting, OctoBot-Commons, Async-Channel

Активность и релизы:
- 4,5k★ и 900+ форков на GitHub
- Недавний релиз 2.0.12 (июнь 2025) с поддержкой Windows, Linux (x64, arm64) и macOS
- Регулярные обновления и активное сообщество

Почему это важно:
- Гибкая модульная архитектура
- Возможность добавлять свои стратегии и источники данных
- Отличный инструмент для изучения алгоритмической торговли и прототипирования
- Интеграции с AI, TradingView, Telegram

👉 Репозиторий: https://github.com/Drakkar-Software/OctoBot



@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🍏 Apple представила FastVLM на Hugging Face — модели 0.5B, 1.5B и 7B с поддержкой WebGPU

VLM (Vision-Language Model) — это модель, которая умеет одновременно работать с картинками и текстом: понимать, что изображено, описывать картинку словами, отвечать на вопросы по изображению и совмещать визуальные и текстовые данные.

Что это значит:
- До 85 раз быстрее и в 3.4 раза компактнее аналогичных VLM
- У крупных моделей время до первого токена стало быстрее в 7.9 раз
- Меньше выходных токенов + быстрее обработка картинок высокого разрешения

🔥Модель работает в реальном времени прямо в браузере через transformers.js и WebGPU.

https://huggingface.co/spaces/apple/fastvlm-webgpu



@Python_Community_ru
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Необычный Python-совет

В Python можно перегрузить оператор [] и превратить объект в умный словарь или вычисляемый массив. Это позволяет писать очень выразительный код.

Пример: создадим класс, который хранит функцию и вычисляет результат «на лету» при обращении по индексу:


class PowTable:
def __init__(self, power):
self.power = power

def __getitem__(self, n):
return n ** self.power

squares = PowTable(2)
cubes = PowTable(3)

print(squares[5]) # 25
print(cubes[4]) # 64


👉 В итоге obj[x] может не просто доставать значение, а вычислять его динамически.

Это мощный приём для DSL, кэшей и ленивых вычислений.

@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Полезный совет: any и all в Python работают с генераторами и используют short-circuit

Иногда в python есть малоизвестные особенности, которые могут сильно помочь.

Например, функция all и any умеют работать не только с простыми списками, но и с генераторами. Это значит, что пайтон остановит проверку сразу, как только результат станет очевидным — это называется "шорт-сёркьют".


nums = [0, 0, 0, 5, 0]

#any (эни) вернёт True, как только найдёт первый элемент != 0
print(any(nums)) # True

#ll (ол) вернёт False, как только встретит первый элемент == 0
print(all(nums)) # False

#использование с генератором — не создаёт лишний список
print(any(x > 10 for x in nums)) # False

Это позволяет писать очень эффективный код без лишних проверок и без создания промежуточных списков.



@Python_Community_ru
🚀 Современная система сборки Meson

Meson — это высокопроизводительная система сборки, ориентированная на простоту и скорость. Она поддерживает множество языков и инструментов, обеспечивая гибкость и эффективность в разработке.

🚀 Основные моменты:
- Поддержка Python и Ninja для сборки.
- Быстрая и интуитивно понятная настройка проектов.
- Активное сообщество и возможность внесения вкладов.
- Совместимость с различными платформами и языками.

📌 GitHub: https://github.com/mesonbuild/meson



@Python_Community_ru
⚠️ SQL-инъекция через f-string

Если подставлять значения прямо в SQL через f-string, злоумышленник может выполнить любой код в базе:


name = "Alice'; DROP TABLE accounts; --"
query = f"SELECT * FROM accounts WHERE name = '{name}'"
conn.sql(query)


💥 И вот таблица accounts удалена!

Почему так?

Потому что строка с именем вставляется как есть и воспринимается как часть SQL-запроса.

Правильный способ — использовать параметры:


name = "Alice'; DROP TABLE accounts; --"
query = "SELECT * FROM accounts WHERE name = ?"
conn.sql(query, params=(name,))

Имя ищется как текст, база остаётся в безопасности.

👉 Запомни: никогда не вставляй пользовательские данные напрямую в SQL.

Используй параметризованные запросы — это надёжная защита от SQL-инъекций.



@Python_Community_ru
🔥2👍1
🔍 Django ModelSearch: Умный поиск для ваших моделей

Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.

🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса

📌 GitHub: https://github.com/kaedroho/django-modelsearch



#python

@Python_Community_ru
🙌🙌🙌🙌 30 документов для тех, кто в диджитал

В преддверии новой активности мы собрали в одну папку 30 Telegram-каналов известных профессионалов и попросили их авторов подготовить для вас документы, которые помогут:

🔴Провести исследование через ИИ;
🔴Сдавать работы и получать акт день в день;
🔴Контролировать сроки и качества проектов;
🔴Отслеживать упоминания бренда в нейропоиске;
🔴Провести аудит HR-процессов;
🔴и еще много много всего!

❗️ Сохранив единожды папку «Документы для тех, кто в диджитал», вы сможете спокойно пройтись по всем каналам и скачать множество авторских документов, которые точно пригодятся в работе.

Также они проводят розыгрыш с топовыми призами:
🥇Главный приз — MacBook Air (M2)
🥈2 место: Яндекс Станция Лайт 2
🥉3 место: Наушники HUAWEI Freebuds 5i

Как участвовать:

1. Подпишись на папку:
https://t.me/addlist/AYTpZaCWIxA5NWNi
2.
Подтверди участие в боте

До встречи 25 сентября — дата объявления победителя!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4
📐 Agent Reinforcement Trainer — фреймворк для обучения ИИ-агентов через reinforcement learning

Проект предлагает удобный способ прокачки LLM для решения практических задач. Во время работы ART использует метод GRPO и позволяет обучать агентов работать с MCP-серверами, играть в игры и выполнять другие действия через взаимодействие со средой.

Инструмент минимально требователен к данным — система сама анализирует доступные инструменты и генерирует учебные сценарии. Поддерживается интеграция с популярными языковыми моделями, включая Qwen 2.5.

🤖 GitHub (https://github.com/OpenPipe/ART)



@Python_Community_ru
👨‍💻 Omnara — Mission Control для AI-агентов

Что это?
Omnara — это «диспетчерская» для ваших AI-агентов. С её помощью можно управлять и наблюдать за работой агентов в реальном времени: через терминал, веб-интерфейс и мобильное приложение.

Возможности
- Отслеживание всех шагов агента в реальном времени.
- Push-уведомления, когда агент ждёт обратной связи.
- Ответы и контроль прямо с телефона или браузера.
- Единый дашборд для всех агентов.

Почему это удобно
- Не нужно сидеть за ПК, чтобы держать процесс под контролем.
- Всё open-source, можно разворачивать самостоятельно.
- Подходит как для разработчиков-одиночек, так и для команд.

👉 Omnara делает взаимодействие с AI-агентами гибким и удобным: вы всегда в курсе, что они делают, и можете вмешаться в любой момент.

🔗 GitHub (https://github.com/omnara-ai/omnara)



@Python_Community_ru
👍1
🚀 Lemonade SDK — локальный сервер для LLM с максимальной производительностью

Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.

Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.

Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`, /completions, /models, /load, /stats и др.).
- SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.

Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.

👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)

#LLM #AI #Lemonade #OpenSource #AMD



@Python_Community_ru
🔥 Thyme: Think Beyond Images

Thyme — это инновационная модель, которая улучшает обработку изображений и сложные задачи рассуждения, используя автономное генерирование и выполнение операций через исполняемый код. Она сочетает в себе методы супервайзинга и обучения с подкреплением, обеспечивая высокую точность выполнения кода.

🚀 Основные моменты:
- Автономная генерация и выполнение операций с изображениями.
- Комбинация супервайзинга и обучения с подкреплением.
- Поддержка высокоразрешающей перцепции и сложного рассуждения.
- Использует алгоритм GRPO-ATS для оптимизации работы.

📌 GitHub: https://github.com/yfzhang114/Thyme

@Python_Community_ru
🔥1
🔥 Подборка небанальных Python-трюков, которые реально упрощают жизнь разработчику

🌀 1. functools.cached_property — ленивое свойство с кэшем
Позволяет вычислить значение один раз и потом возвращать готовый результат.


from functools import cached_property
import time

class DataFetcher:
@cached_property
def heavy_data(self):
print(" Запрос к API...")
time.sleep(2)
return {"status": "ok", "data": [1, 2, 3]}

obj = DataFetcher()
print(obj.heavy_data) # первый вызов → считает
print(obj.heavy_data) # второй вызов → из кэша


🪄 2. contextlib.suppress — игнорируем ошибки красиво

Вместо громоздкого try/except:


import os
from contextlib import suppress

with suppress(FileNotFoundError):
os.remove("tmp.txt")


👉 Идеально для операций, где ошибка — нормальная ситуация (удаление файла, закрытие сокета и т.п.).

🧩 3. Свой контекстный менеджер через enter / exit

Можно сделать объекты, которые сами открываются и закрываются как файлы.


class DemoResource:
def __enter__(self):
print("🔓 Ресурс открыт")
return self

def __exit__(self, exc_type, exc_value, traceback):
print("🔒 Ресурс закрыт")
if exc_type:
print(f"⚠️ Ошибка: {exc_value}")
return True # подавить исключение

with DemoResource() as res:
print(" Работаем...")
raise ValueError("Что-то пошло не так!")


👉 Отлично для работы с ресурсами: подключение к БД, временные настройки, логирование.



@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🦀 PyApp — новый способ упаковать Python-программы

PyApp написан на Rust и превращает Python-проекты в готовые .exe или бинарники, которые работают без отдельной установки Python.

В отличие от PyInstaller или Nuitka, это не библиотека, а отдельный инструмент:
- для каждого проекта нужна своя сборка;
- зато конфигурация максимально гибкая и можно тонко настроить процесс.

🔗 Репозиторий: https://github.com/ofek/pyapp



@Python_Community_ru
🚀 Энергоэффективный транспайлер Python в Rust

Depyler — это транспайлер, который преобразует код Python в безопасный и производительный Rust, снижая потребление энергии на 75-85%. Он предлагает мощные инструменты для тестирования и верификации, обеспечивая высокое качество кода и поддержку CI/CD.

🚀 Основные моменты:
- Эффективное преобразование Python в Rust
- Поддержка многоуровневого тестирования и верификации
- Интеграция с AI для улучшения качества кода
- Поддержка формата Ruchy для функционального программирования
- Высокие стандарты безопасности и производительности

📌 GitHub: https://github.com/paiml/depyler



@Python_Community_ru
🔥2
📝 PDF-Extract-Kit (https://github.com/opendatalab/PDF-Extract-Kit) — библиотека для извлечения данных из PDF-файлов с поддержкой сложных документов с помощью моделей компьютерного зрения!

🔍 Основные особенности:

🌟 Точное извлечение текста и таблиц из структурированных и неструктурированных PDF, включая многостраничные таблицы и иерархические блоки!

🌟 OCR-интеграция, позволяющая обрабатывать PDF-документы с отсканированными изображениями!

🌟 Гибкий API на Python, что делает его удобным для анализа и интеграции в приложения!

🔐 Лицензия: AGPL-3.0

🖥 Github (https://github.com/opendatalab/PDF-Extract-Kit)



@Python_Community_ru
🔥1
🖥 PlutoPrint — быстрое создание PDF и PNG из HTML с помощью Python

PlutoPrint — это лёгкая и удобная библиотека на Python для генерации качественных PDF и изображений напрямую из HTML или XML. Она основана на мощном рендеринг-движке PlutoBook, что делает её идеальной для отчетов, счетов, билетов и визуализаций.

Основные возможности

Поддержка PDF и PNG – можно создавать как статичные изображения, так и печатные документы из
Простота установки и использования — установка через pip install plutoprint; пример для командной строки:

plutoprint input.html output.pdf --size=A4

🟠 Github (https://github.com/plutoprint/plutoprint)



@Python_Community_ru
🖥 Что такое псевдослучайность в Python

Когда мы используем модуль random, числа выглядят случайными, но на самом деле они вычисляются по алгоритму. Поэтому такие числа называют псевдослучайными.

Главное:
- Если задать одинаковый seed (зерно), генератор выдаст одинаковую последовательность. Это удобно для тестов и экспериментов — результат можно воспроизвести.
- Алгоритм по умолчанию — Mersenne Twister (https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D1%85%D1%80%D1%8C_%D0%9C%D0%B5%D1%80%D1%81%D0%B5%D0%BD%D0%BD%D0%B0). Он быстрый и подходит для моделирования, но не годится для безопасности.
- Для генерации паролей, токенов и других защищённых данных нужно использовать модуль secrets, который делает случайность криптографически стойкой.

Просто правило:
- Для экспериментов → random с фиксированным seed.
- Для безопасности → secrets.



Пример работы seed
import random

random.seed(42)
print([random.random() for _ in range(3)])

random.seed(42)
print([random.random() for _ in range(3)]) те же числа

Криптографически безопасные значения
import secrets
print(secrets.token_hex(8))
print(secrets.randbelow(10))

@Python_Community_ru
Отличный курс для тех, кто хочет разобраться в нейронках с нуля от Андрея Карпати (OpenAI/Tesla).

Внутри бесплатная серия лекций на YouTube (и репа на GitHub), где ты с нуля учишься собирать нейронки. Всё максимально hands-on:

Автор не просто рассказывает теорию, а пишет код вместе с тобой — от самых азов до тренировки сетей.

https://github.com/karpathy/nn-zero-to-hero/



@Python_Community_ru
🔥3