🐍 Изучаем MCP на Python — серия уроков от Microsoft
Пошаговое руководство для Python-разработчиков по Model Context Protocol (MCP):
как понять концепцию и построить свой MCP-сервер в интерактивном формате.
📚 Репозиторий с гайдом (https://github.com/microsoft/lets-learn-mcp-python)
#python #MCP #tutorial #developers
@Python_Community_ru
Пошаговое руководство для Python-разработчиков по Model Context Protocol (MCP):
как понять концепцию и построить свой MCP-сервер в интерактивном формате.
📚 Репозиторий с гайдом (https://github.com/microsoft/lets-learn-mcp-python)
#python #MCP #tutorial #developers
@Python_Community_ru
⚡️ Limekit — кроссплатформенный GUI-фреймворк на Lua
Хочешь писать десктоп-приложения без Python и компиляции?
С Limekit всё просто: «написал один раз — запускай везде» (Windows, macOS, Linux).
✨ Что умеет:
- Чистый Lua API, без необходимости знать Python
- 40+ встроенных виджетов, поддержка Material Design и тёмной темы
- Запуск без сборки — достаточно Python и самого фреймворка
- Много примеров и документация на ReadTheDocs
- Полностью опенсорс (GPLv3)
📌 Минимальный пример:
local window = Window{title='Limekit app'}
window:show()
Две строки кода — и у тебя уже готовое окно 🚀
⚡️GitHub (https://github.com/mitosisX/Limekit)
@Python_Community_ru
Хочешь писать десктоп-приложения без Python и компиляции?
С Limekit всё просто: «написал один раз — запускай везде» (Windows, macOS, Linux).
✨ Что умеет:
- Чистый Lua API, без необходимости знать Python
- 40+ встроенных виджетов, поддержка Material Design и тёмной темы
- Запуск без сборки — достаточно Python и самого фреймворка
- Много примеров и документация на ReadTheDocs
- Полностью опенсорс (GPLv3)
📌 Минимальный пример:
local window = Window{title='Limekit app'}
window:show()
Две строки кода — и у тебя уже готовое окно 🚀
⚡️GitHub (https://github.com/mitosisX/Limekit)
@Python_Community_ru
🤔1
🆕 OctoBot — мощный криптовалютный торговый бот с открытым исходным кодом!
OctoBot — это:
- Открытый и настраиваемый крипто-торговый бот от Drakkar-Software
- Интерфейс конфигурации и система *tentacles* (модули-«щупальца») для гибкого построения стратегий — от технического анализа до интеграции внешних данных
- Поддержка Spot и Futures, торговля на более чем 15 биржах через библиотеку ccxt
- Возможности: создание и тестирование стратегий, оптимизация, торговля корзиной криптовалют, использование AI-инструментов и backtesting
Архитектура проекта:
- OctoBot — ядро с backtesting и стратегическим менеджментом
- OctoBot-Tentacles — модули для стратегий, нотификаций, внешних данных
- OctoBot-Trading — взаимодействие с биржами через ccxt
- Дополнительные пакеты: OctoBot-Services, OctoBot-Backtesting, OctoBot-Commons, Async-Channel
Активность и релизы:
- 4,5k★ и 900+ форков на GitHub
- Недавний релиз 2.0.12 (июнь 2025) с поддержкой Windows, Linux (x64, arm64) и macOS
- Регулярные обновления и активное сообщество
Почему это важно:
- Гибкая модульная архитектура
- Возможность добавлять свои стратегии и источники данных
- Отличный инструмент для изучения алгоритмической торговли и прототипирования
- Интеграции с AI, TradingView, Telegram
👉 Репозиторий: https://github.com/Drakkar-Software/OctoBot
@Python_Community_ru
OctoBot — это:
- Открытый и настраиваемый крипто-торговый бот от Drakkar-Software
- Интерфейс конфигурации и система *tentacles* (модули-«щупальца») для гибкого построения стратегий — от технического анализа до интеграции внешних данных
- Поддержка Spot и Futures, торговля на более чем 15 биржах через библиотеку ccxt
- Возможности: создание и тестирование стратегий, оптимизация, торговля корзиной криптовалют, использование AI-инструментов и backtesting
Архитектура проекта:
- OctoBot — ядро с backtesting и стратегическим менеджментом
- OctoBot-Tentacles — модули для стратегий, нотификаций, внешних данных
- OctoBot-Trading — взаимодействие с биржами через ccxt
- Дополнительные пакеты: OctoBot-Services, OctoBot-Backtesting, OctoBot-Commons, Async-Channel
Активность и релизы:
- 4,5k★ и 900+ форков на GitHub
- Недавний релиз 2.0.12 (июнь 2025) с поддержкой Windows, Linux (x64, arm64) и macOS
- Регулярные обновления и активное сообщество
Почему это важно:
- Гибкая модульная архитектура
- Возможность добавлять свои стратегии и источники данных
- Отличный инструмент для изучения алгоритмической торговли и прототипирования
- Интеграции с AI, TradingView, Telegram
👉 Репозиторий: https://github.com/Drakkar-Software/OctoBot
@Python_Community_ru
GitHub
GitHub - Drakkar-Software/OctoBot: Open source crypto trading bot
Open source crypto trading bot. Contribute to Drakkar-Software/OctoBot development by creating an account on GitHub.
This media is not supported in your browser
VIEW IN TELEGRAM
🍏 Apple представила FastVLM на Hugging Face — модели 0.5B, 1.5B и 7B с поддержкой WebGPU
VLM (Vision-Language Model) — это модель, которая умеет одновременно работать с картинками и текстом: понимать, что изображено, описывать картинку словами, отвечать на вопросы по изображению и совмещать визуальные и текстовые данные.
⚡ Что это значит:
- До 85 раз быстрее и в 3.4 раза компактнее аналогичных VLM
- У крупных моделей время до первого токена стало быстрее в 7.9 раз
- Меньше выходных токенов + быстрее обработка картинок высокого разрешения
🔥Модель работает в реальном времени прямо в браузере через transformers.js и WebGPU.
https://huggingface.co/spaces/apple/fastvlm-webgpu
@Python_Community_ru
VLM (Vision-Language Model) — это модель, которая умеет одновременно работать с картинками и текстом: понимать, что изображено, описывать картинку словами, отвечать на вопросы по изображению и совмещать визуальные и текстовые данные.
⚡ Что это значит:
- До 85 раз быстрее и в 3.4 раза компактнее аналогичных VLM
- У крупных моделей время до первого токена стало быстрее в 7.9 раз
- Меньше выходных токенов + быстрее обработка картинок высокого разрешения
🔥Модель работает в реальном времени прямо в браузере через transformers.js и WebGPU.
https://huggingface.co/spaces/apple/fastvlm-webgpu
@Python_Community_ru
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Необычный Python-совет
В Python можно перегрузить оператор [] и превратить объект в умный словарь или вычисляемый массив. Это позволяет писать очень выразительный код.
Пример: создадим класс, который хранит функцию и вычисляет результат «на лету» при обращении по индексу:
class PowTable:
def __init__(self, power):
self.power = power
def __getitem__(self, n):
return n ** self.power
squares = PowTable(2)
cubes = PowTable(3)
print(squares[5]) # 25
print(cubes[4]) # 64
👉 В итоге obj[x] может не просто доставать значение, а вычислять его динамически.
Это мощный приём для DSL, кэшей и ленивых вычислений.
@Python_Community_ru
В Python можно перегрузить оператор [] и превратить объект в умный словарь или вычисляемый массив. Это позволяет писать очень выразительный код.
Пример: создадим класс, который хранит функцию и вычисляет результат «на лету» при обращении по индексу:
class PowTable:
def __init__(self, power):
self.power = power
def __getitem__(self, n):
return n ** self.power
squares = PowTable(2)
cubes = PowTable(3)
print(squares[5]) # 25
print(cubes[4]) # 64
👉 В итоге obj[x] может не просто доставать значение, а вычислять его динамически.
Это мощный приём для DSL, кэшей и ленивых вычислений.
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Полезный совет: any и all в Python работают с генераторами и используют short-circuit
Иногда в python есть малоизвестные особенности, которые могут сильно помочь.
Например, функция all и any умеют работать не только с простыми списками, но и с генераторами. Это значит, что пайтон остановит проверку сразу, как только результат станет очевидным — это называется "шорт-сёркьют".
nums = [0, 0, 0, 5, 0]
#any (эни) вернёт True, как только найдёт первый элемент != 0
print(any(nums)) # True
#ll (ол) вернёт False, как только встретит первый элемент == 0
print(all(nums)) # False
#использование с генератором — не создаёт лишний список
print(any(x > 10 for x in nums)) # False
Это позволяет писать очень эффективный код без лишних проверок и без создания промежуточных списков.
@Python_Community_ru
Иногда в python есть малоизвестные особенности, которые могут сильно помочь.
Например, функция all и any умеют работать не только с простыми списками, но и с генераторами. Это значит, что пайтон остановит проверку сразу, как только результат станет очевидным — это называется "шорт-сёркьют".
nums = [0, 0, 0, 5, 0]
#any (эни) вернёт True, как только найдёт первый элемент != 0
print(any(nums)) # True
#ll (ол) вернёт False, как только встретит первый элемент == 0
print(all(nums)) # False
#использование с генератором — не создаёт лишний список
print(any(x > 10 for x in nums)) # False
Это позволяет писать очень эффективный код без лишних проверок и без создания промежуточных списков.
@Python_Community_ru
🚀 Современная система сборки Meson
Meson — это высокопроизводительная система сборки, ориентированная на простоту и скорость. Она поддерживает множество языков и инструментов, обеспечивая гибкость и эффективность в разработке.
🚀 Основные моменты:
- Поддержка Python и Ninja для сборки.
- Быстрая и интуитивно понятная настройка проектов.
- Активное сообщество и возможность внесения вкладов.
- Совместимость с различными платформами и языками.
📌 GitHub: https://github.com/mesonbuild/meson
@Python_Community_ru
Meson — это высокопроизводительная система сборки, ориентированная на простоту и скорость. Она поддерживает множество языков и инструментов, обеспечивая гибкость и эффективность в разработке.
🚀 Основные моменты:
- Поддержка Python и Ninja для сборки.
- Быстрая и интуитивно понятная настройка проектов.
- Активное сообщество и возможность внесения вкладов.
- Совместимость с различными платформами и языками.
📌 GitHub: https://github.com/mesonbuild/meson
@Python_Community_ru
⚠️ SQL-инъекция через f-string
Если подставлять значения прямо в SQL через f-string, злоумышленник может выполнить любой код в базе:
name = "Alice'; DROP TABLE accounts; --"
query = f"SELECT * FROM accounts WHERE name = '{name}'"
conn.sql(query)
💥 И вот таблица accounts удалена!
Почему так?
Потому что строка с именем вставляется как есть и воспринимается как часть SQL-запроса.
✅ Правильный способ — использовать параметры:
name = "Alice'; DROP TABLE accounts; --"
query = "SELECT * FROM accounts WHERE name = ?"
conn.sql(query, params=(name,))
✔ Имя ищется как текст, база остаётся в безопасности.
👉 Запомни: никогда не вставляй пользовательские данные напрямую в SQL.
Используй параметризованные запросы — это надёжная защита от SQL-инъекций.
@Python_Community_ru
Если подставлять значения прямо в SQL через f-string, злоумышленник может выполнить любой код в базе:
name = "Alice'; DROP TABLE accounts; --"
query = f"SELECT * FROM accounts WHERE name = '{name}'"
conn.sql(query)
💥 И вот таблица accounts удалена!
Почему так?
Потому что строка с именем вставляется как есть и воспринимается как часть SQL-запроса.
✅ Правильный способ — использовать параметры:
name = "Alice'; DROP TABLE accounts; --"
query = "SELECT * FROM accounts WHERE name = ?"
conn.sql(query, params=(name,))
✔ Имя ищется как текст, база остаётся в безопасности.
👉 Запомни: никогда не вставляй пользовательские данные напрямую в SQL.
Используй параметризованные запросы — это надёжная защита от SQL-инъекций.
@Python_Community_ru
🔥2👍1
🔍 Django ModelSearch: Умный поиск для ваших моделей
Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.
🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса
📌 GitHub: https://github.com/kaedroho/django-modelsearch
#python
@Python_Community_ru
Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.
🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса
📌 GitHub: https://github.com/kaedroho/django-modelsearch
#python
@Python_Community_ru
GitHub
GitHub - kaedroho/django-modelsearch: Index Django Models with Elasticsearch or OpenSearch and query them with the ORM
Index Django Models with Elasticsearch or OpenSearch and query them with the ORM - kaedroho/django-modelsearch
В преддверии новой активности мы собрали в одну папку 30 Telegram-каналов известных профессионалов и попросили их авторов подготовить для вас документы, которые помогут:
Также они проводят розыгрыш с топовыми призами:
Как участвовать:
1. Подпишись на папку: https://t.me/addlist/AYTpZaCWIxA5NWNi
2. Подтверди участие в боте
До встречи 25 сентября — дата объявления победителя!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4
📐 Agent Reinforcement Trainer — фреймворк для обучения ИИ-агентов через reinforcement learning
Проект предлагает удобный способ прокачки LLM для решения практических задач. Во время работы ART использует метод GRPO и позволяет обучать агентов работать с MCP-серверами, играть в игры и выполнять другие действия через взаимодействие со средой.
Инструмент минимально требователен к данным — система сама анализирует доступные инструменты и генерирует учебные сценарии. Поддерживается интеграция с популярными языковыми моделями, включая Qwen 2.5.
🤖 GitHub (https://github.com/OpenPipe/ART)
@Python_Community_ru
Проект предлагает удобный способ прокачки LLM для решения практических задач. Во время работы ART использует метод GRPO и позволяет обучать агентов работать с MCP-серверами, играть в игры и выполнять другие действия через взаимодействие со средой.
Инструмент минимально требователен к данным — система сама анализирует доступные инструменты и генерирует учебные сценарии. Поддерживается интеграция с популярными языковыми моделями, включая Qwen 2.5.
🤖 GitHub (https://github.com/OpenPipe/ART)
@Python_Community_ru
👨💻 Omnara — Mission Control для AI-агентов
Что это?
Omnara — это «диспетчерская» для ваших AI-агентов. С её помощью можно управлять и наблюдать за работой агентов в реальном времени: через терминал, веб-интерфейс и мобильное приложение.
Возможности
- Отслеживание всех шагов агента в реальном времени.
- Push-уведомления, когда агент ждёт обратной связи.
- Ответы и контроль прямо с телефона или браузера.
- Единый дашборд для всех агентов.
Почему это удобно
- Не нужно сидеть за ПК, чтобы держать процесс под контролем.
- Всё open-source, можно разворачивать самостоятельно.
- Подходит как для разработчиков-одиночек, так и для команд.
👉 Omnara делает взаимодействие с AI-агентами гибким и удобным: вы всегда в курсе, что они делают, и можете вмешаться в любой момент.
🔗 GitHub (https://github.com/omnara-ai/omnara)
@Python_Community_ru
Что это?
Omnara — это «диспетчерская» для ваших AI-агентов. С её помощью можно управлять и наблюдать за работой агентов в реальном времени: через терминал, веб-интерфейс и мобильное приложение.
Возможности
- Отслеживание всех шагов агента в реальном времени.
- Push-уведомления, когда агент ждёт обратной связи.
- Ответы и контроль прямо с телефона или браузера.
- Единый дашборд для всех агентов.
Почему это удобно
- Не нужно сидеть за ПК, чтобы держать процесс под контролем.
- Всё open-source, можно разворачивать самостоятельно.
- Подходит как для разработчиков-одиночек, так и для команд.
👉 Omnara делает взаимодействие с AI-агентами гибким и удобным: вы всегда в курсе, что они делают, и можете вмешаться в любой момент.
🔗 GitHub (https://github.com/omnara-ai/omnara)
@Python_Community_ru
👍1
🚀 Lemonade SDK — локальный сервер для LLM с максимальной производительностью
Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.
Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.
Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`, /completions, /models, /load, /stats и др.).
- SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.
Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.
👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)
#LLM #AI #Lemonade #OpenSource #AMD
@Python_Community_ru
Что это?
Lemonade — это open-source проект (спонсируется AMD), который позволяет запускать большие языковые модели прямо у себя: на ПК, в браузере или на сервере. Всё работает локально, без облака, с поддержкой GPU и NPU, и при этом совместимо со стандартом OpenAI API.
Возможности
- Lemonade Server — локальный сервер, который имитирует OpenAI API. Поддерживает движки llama.cpp (GGUF), ONNX Runtime GenAI и HuggingFace Transformers. Работает с ускорением через Vulkan и ROCm.
- Lemonade CLI — консольный инструмент для запуска моделей, тестов производительности, проверки памяти и точности.
- Python API — простой способ подключить LLM к своим скриптам и приложениям.
Интеграция и совместимость
- Полная поддержка OpenAI API (`/chat/completions`, /completions, /models, /load, /stats и др.).
- SDK доступен для Python, C++, Java, C#, Go, Node.js, Rust, PHP и других языков.
Почему это важно
- Всё работает локально → выше приватность и ниже затраты.
- Автоматическая оптимизация под ваше железо.
- Подходит для продакшн-нагрузок, edge-устройств и экспериментов.
- Удобные инструменты: сервер, CLI, Python API, web-панель.
- Проект активно развивается: свежие релизы выходят каждую неделю.
👉 Репозиторий: [github.com/lemonade-sdk/lemonade](https://github.com/lemonade-sdk/lemonade)
#LLM #AI #Lemonade #OpenSource #AMD
@Python_Community_ru