Excel Basics for Data Analysis
‼️What you'll learn
Display working knowledge of Excel for Data Analysis.
Perform basic spreadsheet tasks including navigation, data entry, and using formulas.
Employ data quality techniques to import and clean data in Excel.
Analyze data in spreadsheets by using filter, sort, look-up functions, as well as pivot tables
📥https://imp.i384100.net/Qy9rYo
#علم_داده #اکسل
#DataScience
#Python #Free_course
🆔 @Python4all_pro
‼️What you'll learn
Display working knowledge of Excel for Data Analysis.
Perform basic spreadsheet tasks including navigation, data entry, and using formulas.
Employ data quality techniques to import and clean data in Excel.
Analyze data in spreadsheets by using filter, sort, look-up functions, as well as pivot tables
📥https://imp.i384100.net/Qy9rYo
#علم_داده #اکسل
#DataScience
#Python #Free_course
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
ادامه در پست بعد👇
#cheat_sheet #Python
🆔 @Python4all_pro
#NumPy cheat sheet for #datascience :
*Array Creation*
1.
2.
3.
4.
5.
6.
*Array Operations*
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
*Array Indexing*
1.
2.
3.
*Array Reshaping*
1.
2.
3.
*Array Manipulation*
1.
2.
3.
4.
*Mathematical Functions*
1.
2.
3.
4.
5.
*Statistical Functions*
1.
2.
3.
4.
*Random Number Generation*
1.
2.
3.
*Linear Algebra*
1.
2.
3.
#cheat_sheet #Python
🆔 @Python4all_pro
*Array Creation*
1.
numpy.array()
- Create an array from a list or other iterable.2.
numpy.zeros()
- Create an array filled with zeros.3.
numpy.ones()
- Create an array filled with ones.4.
numpy.empty()
- Create an empty array.5.
numpy.arange()
- Create an array with evenly spaced values.6.
numpy.linspace()
- Create an array with evenly spaced values.*Array Operations*
1.
+
- Element-wise addition.2.
-
- Element-wise subtraction.3.
*
- Element-wise multiplication.4.
/
- Element-wise division.5.
**
- Element-wise exponentiation.6.
numpy.sum()
- Sum of all elements.7.
numpy.mean()
- Mean of all elements.8.
numpy.median()
- Median of all elements.9.
numpy.std()
- Standard deviation.10.
numpy.var()
- Variance.*Array Indexing*
1.
arr[i]
- Access ith element.2.
arr[i:j]
- Access slice from ith to jth element.3.
arr[i:j:k]
- Access slice with step k.*Array Reshaping*
1.
arr.reshape()
- Reshape array.2.
arr.flatten()
- Flatten array.3.
arr.ravel()
- Flatten array.*Array Manipulation*
1.
numpy.concatenate()
- Concatenate arrays.2.
numpy.split()
- Split array.3.
numpy.transpose()
- Transpose array.4.
numpy.flip()
- Flip array.*Mathematical Functions*
1.
numpy.sin()
- Sine.2.
numpy.cos()
- Cosine.3.
numpy.tan()
- Tangent.4.
numpy.exp()
- Exponential.5.
numpy.log()
- Natural logarithm.*Statistical Functions*
1.
numpy.min()
- Minimum value.2.
numpy.max()
- Maximum value.3.
numpy.percentile()
- Percentile.4.
numpy.quantile()
- Quantile.*Random Number Generation*
1.
numpy.random.rand()
- Random numbers.2.
numpy.random.normal()
- Normal distribution.3.
numpy.random.uniform()
- Uniform distribution.*Linear Algebra*
1.
numpy.dot()
- Dot product.2.
numpy.matmul()
- Matrix multiplication.3.
numpy.linalg.inv()
- Matrix inverse.#cheat_sheet #Python
🆔 @Python4all_pro
برای آشنایی با الگوریتم های ساده و پیچیده پایتون این ریپو را ببینید هر الگوریتمی بخواهید اینجا هست
https://github.com/TheAlgorithms/Python
#Python #DataScience
#MachineLearning #AI
🆔 @Python4all_pro
https://github.com/TheAlgorithms/Python
#Python #DataScience
#MachineLearning #AI
🆔 @Python4all_pro
GitHub
GitHub - TheAlgorithms/Python: All Algorithms implemented in Python
All Algorithms implemented in Python. Contribute to TheAlgorithms/Python development by creating an account on GitHub.
Automatically Generate Image CAPTCHAs with Python for Enhanced Security
#Python #DataScience
#MachineLearning #AI
🆔 @Python4all_pro
#Python #DataScience
#MachineLearning #AI
🆔 @Python4all_pro
Python for Everything
Top 24 Python Modules
#پایتون #Python #یادگیری_ماشین #MachineLearning #علم_داد #DataScience
🆔 @Python4all_pro
Top 24 Python Modules
#پایتون #Python #یادگیری_ماشین #MachineLearning #علم_داد #DataScience
🆔 @Python4all_pro
20 Pandas Functions for 80% of your Data Science Tasks👇
https://levelup.gitconnected.com/20-pandas-functions-for-80-of-your-data-science-tasks-b610c8bfe63c
Maximizing Pandas Efficiency: Top 10 Mistakes to Steer Clear of in Your Code 👇
https://levelup.gitconnected.com/maximizing-pandas-efficiency-top-10-mistakes-to-steer-clear-of-in-your-code-8623aff053cd
#علم_داده #پایتون #Python #DataScience
🆔 @Python4all_pro
https://levelup.gitconnected.com/20-pandas-functions-for-80-of-your-data-science-tasks-b610c8bfe63c
Maximizing Pandas Efficiency: Top 10 Mistakes to Steer Clear of in Your Code 👇
https://levelup.gitconnected.com/maximizing-pandas-efficiency-top-10-mistakes-to-steer-clear-of-in-your-code-8623aff053cd
#علم_داده #پایتون #Python #DataScience
🆔 @Python4all_pro
Medium
20 Pandas Functions for 80% of your Data Science Tasks
Master these Functions and Get Your Work Done
Media is too big
VIEW IN TELEGRAM
Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn)
Learn Data Analysis with Python in this comprehensive tutorial for beginners, with exercises included!
NOTE: Check description for updated Notebook links.
Data Analysis has been around for a long time, but up until a few years ago, it was practiced using closed, expensive and limited tools like Excel or Tableau. Python, SQL and other open libraries have changed Data Analysis forever.
In this tutorial you'll learn the whole process of Data Analysis: reading data from multiple sources (CSVs, SQL, Excel, etc), processing them using NumPy and Pandas, visualize them using Matplotlib and Seaborn and clean and process it to create reports.
Additionally, we've included a thorough Jupyter Notebook tutorial, and a quick Python reference to refresh your programming skills.
https://www.youtube.com/watch?v=r-uOLxNrNk8&t=683s
#علم_داده #پایتون #Python #DataScience
🆔 @Python4all_pro
Learn Data Analysis with Python in this comprehensive tutorial for beginners, with exercises included!
NOTE: Check description for updated Notebook links.
Data Analysis has been around for a long time, but up until a few years ago, it was practiced using closed, expensive and limited tools like Excel or Tableau. Python, SQL and other open libraries have changed Data Analysis forever.
In this tutorial you'll learn the whole process of Data Analysis: reading data from multiple sources (CSVs, SQL, Excel, etc), processing them using NumPy and Pandas, visualize them using Matplotlib and Seaborn and clean and process it to create reports.
Additionally, we've included a thorough Jupyter Notebook tutorial, and a quick Python reference to refresh your programming skills.
https://www.youtube.com/watch?v=r-uOLxNrNk8&t=683s
#علم_داده #پایتون #Python #DataScience
🆔 @Python4all_pro