✅مدلسازی Generative دربرابر Discriminative
✍️از چشم انداز آکادمیکی، پیشرفتهای حاصل در discriminative modeling را سادهتر میتوان بررسی کرد؛ زیرا میتوانیم عملکرد شبکهها را با استفاده از معیارهای عملکردی، ارزیابی کنیم، اما ارزیابی مدلهای generative دشوار است. به خصوص زمانی که کیفیت خروجیهای تولید شده subjective است. بنابراین در سالهای اخیر بیشترین تأکید بر آموزش مدلهای discriminative بوده است تا به عملکرد انسانی یا فوق انسانی در تفکیک تصاویر و متن برسد.
🔷️اطلاعات بیشتر👇
https://onlinebme.com/generative-vs-discriminative-modeling/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
✍️از چشم انداز آکادمیکی، پیشرفتهای حاصل در discriminative modeling را سادهتر میتوان بررسی کرد؛ زیرا میتوانیم عملکرد شبکهها را با استفاده از معیارهای عملکردی، ارزیابی کنیم، اما ارزیابی مدلهای generative دشوار است. به خصوص زمانی که کیفیت خروجیهای تولید شده subjective است. بنابراین در سالهای اخیر بیشترین تأکید بر آموزش مدلهای discriminative بوده است تا به عملکرد انسانی یا فوق انسانی در تفکیک تصاویر و متن برسد.
🔷️اطلاعات بیشتر👇
https://onlinebme.com/generative-vs-discriminative-modeling/
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
Forwarded from onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆
〰〰〰〰〰 برنامهنویسی متلب 〰〰〰〰〰
🔲 اصول برنامهنویسی در متلب (رایگان)
▪️مدت دوره: 11 ساعت
🔘 Link
〰〰〰〰〰 برنامهنویسی پایتون 〰〰〰〰〰
⚪️ فصل 1: اصول برنامهنویسی پایتون
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link
〰〰〰 شناسایی الگو و یادگیری ماشین 〰〰〰
⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیادهسازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتمهای کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7: الگوریتمهای انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتمهای خوشهبندی
◽️مدت دوره: 13 ساعت
🔘 Link
〰〰〰〰〰 شبکههای عصبی 〰〰〰〰〰
⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکههای عمیق در بینایی ماشین
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️ دوره پیادهسازی شبکههای عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link
〰〰〰〰 پردازش سیگنال مغزی 〰〰〰〰
⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️ مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️مدت دوره: 21 ساعت
🔘 Link
⚪️ پیادهسازی مقاله CSSP (BCI مبتنی بر MI)
◽️مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیادهسازی مقاله RCSP (BCI مبتنی بر MI)
◽️مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️مدت دوره: 8 ساعت
🔘 Link
⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link
〰〰〰〰 دوره جامع پردازش تصویر 〰〰〰〰
⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
Forwarded from onlinebme
Onlinebme-courses.pdf
610.3 KB
✅ نگاه کلی به دورههای آکادمی Onlinebme
🟠30 درصد تخفیف پاییزی 🎊🎊🎉
🏷 لیست دورههای Onlinebme
┤ ◼️ برنامهنویسی Python
┤ ◻️ برنامهنویسی MATLAB
┤ ◼️ یادگیری ماشین|شناسائی الگو
┤ ◻️ پردازش سیگنالهای مغزی (EEG)
┤ ◼️ برنامهنویسی شئی گرا(OOP)
┤ ◻️ واسط مغز-کامپیوتر (BCI)
┤ ◼️ شبکههای عصبی
┤ ◻️ پردازش تصویر
┤ ◼️ یادگیری عمیق
┤ ◻️ بینایی ماشین
┤ ◼️ پیادهسازی شبکههای عصبی با پایتورچ
┘ ◼️ پردازش سیگنال EEG در پایتون(MNE)
💡پکیجهای آموزشی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
🟠30 درصد تخفیف پاییزی 🎊🎊🎉
🏷 لیست دورههای Onlinebme
┤ ◼️ برنامهنویسی Python
┤ ◻️ برنامهنویسی MATLAB
┤ ◼️ یادگیری ماشین|شناسائی الگو
┤ ◻️ پردازش سیگنالهای مغزی (EEG)
┤ ◼️ برنامهنویسی شئی گرا(OOP)
┤ ◻️ واسط مغز-کامپیوتر (BCI)
┤ ◼️ شبکههای عصبی
┤ ◻️ پردازش تصویر
┤ ◼️ یادگیری عمیق
┤ ◻️ بینایی ماشین
┤ ◼️ پیادهسازی شبکههای عصبی با پایتورچ
┘ ◼️ پردازش سیگنال EEG در پایتون(MNE)
💡پکیجهای آموزشی
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
جایزه نوبل فیزیک سال 2024، به دو نفر از پژوهشگران بسیار برجسته فیزیک و هوش مصنوعی (جان جِی. هاپفیلد و جفری اِی. هینتون) به خاطر "اکتشافات و اختراعات بنیادی که یادگیری ماشینی را برای شبکههای عصبی مصنوعی ممکن ساخته است"، رسید.
دو برنده جایزه نوبل فیزیک امسال، از ابزارهای فیزیک برای توسعه روشهایی استفاده کردهاند که اساس یادگیری ماشینی قدرتمند امروزی است.
جان هاپفیلد (استاد بازنشسته دانشگاه پرینستون) یک حافظه تداعیگر ایجاد کرده است که میتواند تصاویر و الگوهای دیگر را در دادهها ذخیره و بازسازی کند.
جفری هینتون (استاد بازنشسته دانشگاه تورنتو و پژوهشگر ارشد گوگل) روشی ابداع کرده است که میتواند به صورت خودکار ویژگیهای دادهها را پیدا کرده و وظایفی مانند شناسایی عناصر خاص در تصاویر را انجام دهد.
@Onlinebme
دو برنده جایزه نوبل فیزیک امسال، از ابزارهای فیزیک برای توسعه روشهایی استفاده کردهاند که اساس یادگیری ماشینی قدرتمند امروزی است.
جان هاپفیلد (استاد بازنشسته دانشگاه پرینستون) یک حافظه تداعیگر ایجاد کرده است که میتواند تصاویر و الگوهای دیگر را در دادهها ذخیره و بازسازی کند.
جفری هینتون (استاد بازنشسته دانشگاه تورنتو و پژوهشگر ارشد گوگل) روشی ابداع کرده است که میتواند به صورت خودکار ویژگیهای دادهها را پیدا کرده و وظایفی مانند شناسایی عناصر خاص در تصاویر را انجام دهد.
@Onlinebme
onlinebme
✅ تنسورفلو یا پایتورچ، چرا PyTorch برای محققین انتخاب مناسبی است؟ 👨💻محمد نوری زاده چرلو 🗓21 اسفند 1402 💡تنسورفلو یا پایتورچ، مسئله این است! تنسورفلو و پایتورچ دو پلتفرم قدرتمند یادگیری عمیق، به عبارتی دو ستون اصلی در زمینه یادگیری عمیق هستند. تنسورفلو توسط…
✅معرفی پکیج tsai برای پردازش سیگنال
✍️پکیج tsai یک پکیج یادگیری عمیق مبتنی بر پایتورچ و fastai است که با معرفی تکنیکهای جدید پردازش برای تسک های سری زمانی طراحی شده است مانند کلاسبندی، رگرسیون، پیش بینی و ...
از این پکیج می توان برای پردازش سیگنال های EEG بهره گرفت.
🔹چه شبکه هایی را پوشش میدهد؟
شبکههایی چون LSTM, GRU, MLP, FCN, ResNet, Transformer, ...
🔸link: https://github.com/timeseriesAI/tsai?tab=readme-ov-file
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
✍️پکیج tsai یک پکیج یادگیری عمیق مبتنی بر پایتورچ و fastai است که با معرفی تکنیکهای جدید پردازش برای تسک های سری زمانی طراحی شده است مانند کلاسبندی، رگرسیون، پیش بینی و ...
از این پکیج می توان برای پردازش سیگنال های EEG بهره گرفت.
🔹چه شبکه هایی را پوشش میدهد؟
شبکههایی چون LSTM, GRU, MLP, FCN, ResNet, Transformer, ...
🔸link: https://github.com/timeseriesAI/tsai?tab=readme-ov-file
🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
🔆✅برگزاری دو دوره همزمان "پردازش سیگنال EEG پیشرفته" و "Generative AI" به زودی...