This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling
Autoregressive approach for modeling dynamically deforming human bodies by Meta.
🖥 Github: github.com/facebookresearch/AutoAvatar
⭐️ Project: zqbai-jeremy.github.io/autoavatar
✅️ Paprer: arxiv.org/pdf/2203.13817.pdf
⏩ Dataset: https://amass.is.tue.mpg.de/index.html
⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4
@Machine_learn
Autoregressive approach for modeling dynamically deforming human bodies by Meta.
🖥 Github: github.com/facebookresearch/AutoAvatar
⭐️ Project: zqbai-jeremy.github.io/autoavatar
✅️ Paprer: arxiv.org/pdf/2203.13817.pdf
⏩ Dataset: https://amass.is.tue.mpg.de/index.html
⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4
@Machine_learn
👍4❤1
🖥 Deep BCI SW ver. 1.0 is released.
🖥 Github: https://github.com/DeepBCI/Deep-BCI
⏩ Paper: https://arxiv.org/abs/2301.08448v1
➡️ Project: http://deepbci.korea.ac.kr/
@Machine_learn
🖥 Github: https://github.com/DeepBCI/Deep-BCI
⏩ Paper: https://arxiv.org/abs/2301.08448v1
➡️ Project: http://deepbci.korea.ac.kr/
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✅️ StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis
🖥 Github: github.com/autonomousvision/stylegan-t
✅️ Paper: arxiv.org/pdf/2301.09515.pdf
⭐️ Project: sites.google.com/view/stylegan-t
✔️ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo
🖥 Projected GAN: https://github.com/autonomousvision/projected-gan
@Machine_learn
🖥 Github: github.com/autonomousvision/stylegan-t
✅️ Paper: arxiv.org/pdf/2301.09515.pdf
⭐️ Project: sites.google.com/view/stylegan-t
✔️ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo
🖥 Projected GAN: https://github.com/autonomousvision/projected-gan
@Machine_learn
🔥3👍1
❔ PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development
🖥 Github: https://github.com/primeqa/primeqa
🖥 Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks
✅️ Paper: https://arxiv.org/abs/2301.09715v2
⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions
✔️ Docs: https://primeqa.github.io/primeqa/installation.html
@Machine_learn
🖥 Github: https://github.com/primeqa/primeqa
🖥 Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks
✅️ Paper: https://arxiv.org/abs/2301.09715v2
⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions
✔️ Docs: https://primeqa.github.io/primeqa/installation.html
@Machine_learn
👍1🔥1
🔥 Applied Deep Learning Course
🖥 Github: https://github.com/maziarraissi/Applied-Deep-Learning
⏩ Paper: https://arxiv.org/pdf/2301.11316.pdf
➡️Videos: https://www.youtube.com/playlist?list=PLoEMreTa9CNmuxQeIKWaz7AVFd_ZeAcy4
@Machine_learn
🖥 Github: https://github.com/maziarraissi/Applied-Deep-Learning
⏩ Paper: https://arxiv.org/pdf/2301.11316.pdf
➡️Videos: https://www.youtube.com/playlist?list=PLoEMreTa9CNmuxQeIKWaz7AVFd_ZeAcy4
@Machine_learn
👍7❤1
2301.11696.pdf
871.9 KB
SLCNN: Sentence-Level Convolutional Neural Network for Text Classification
Ali Jarrahi, Leila Safari , Ramin Mousa
abstract: Text classification is a fundamental task in natural language processing (NLP). Several recent studies show the success of deep learning on text processing. Convolutional neural network (CNN), as a popular deep learning model, has shown remarkable success in the task of text classification. In this paper, new baseline models have been studied for text classification using CNN. In these models, documents are fed to the network as a three-dimensional tensor representation to provide sentence-level analysis. Applying such a method enables the models to take advantage of the positional information of the sentences in the text. Besides, analysing adjacent sentences allows extracting additional features. The proposed models have been compared with the state-of-the-art models using several datasets.
Author: @Raminmousa
@Machine_learn
Ali Jarrahi, Leila Safari , Ramin Mousa
abstract: Text classification is a fundamental task in natural language processing (NLP). Several recent studies show the success of deep learning on text processing. Convolutional neural network (CNN), as a popular deep learning model, has shown remarkable success in the task of text classification. In this paper, new baseline models have been studied for text classification using CNN. In these models, documents are fed to the network as a three-dimensional tensor representation to provide sentence-level analysis. Applying such a method enables the models to take advantage of the positional information of the sentences in the text. Besides, analysing adjacent sentences allows extracting additional features. The proposed models have been compared with the state-of-the-art models using several datasets.
Author: @Raminmousa
@Machine_learn
👍6
STEPS: Joint Self-supervised Nighttime Image Enhancement and Depth Estimation (ICRA 2023)
🖥 Github: https://github.com/ucaszyp/steps
⏩ Paper: https://arxiv.org/abs/2302.01334v1
➡️ Dataset: https://paperswithcode.com/dataset/nuscenes
@Machine_learn
🖥 Github: https://github.com/ucaszyp/steps
⏩ Paper: https://arxiv.org/abs/2302.01334v1
➡️ Dataset: https://paperswithcode.com/dataset/nuscenes
@Machine_learn
😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Audio-Visual Segmentation (AVS)
🖥 Github: https://github.com/OpenNLPLab/AVSBench
✅️ Paper: https://arxiv.org/pdf/2301.13190.pdf
⭐️ Project: https://opennlplab.github.io/AVSBench/
✅️ Dataset: http://www.avlbench.opennlplab.cn/download
🔹 Benchmark: http://www.avlbench.opennlplab.cn/
@Machine_learn
🖥 Github: https://github.com/OpenNLPLab/AVSBench
✅️ Paper: https://arxiv.org/pdf/2301.13190.pdf
⭐️ Project: https://opennlplab.github.io/AVSBench/
✅️ Dataset: http://www.avlbench.opennlplab.cn/download
🔹 Benchmark: http://www.avlbench.opennlplab.cn/
@Machine_learn
👍5
OReilly.Fundamentals.of.Deep.Learning.pdf
15.9 MB
Fundamentals of Deep Learning
Designing Next-Generation Machine Intelligence Algorithms
#Book #DL
@Machine_learn
Designing Next-Generation Machine Intelligence Algorithms
#Book #DL
@Machine_learn
❤4👍4
🚀 Slapo: A Schedule Language for Large Model Training
Slapo is a schedule language for progressive optimization of large deep learning model training.
🖥 Github: https://github.com/awslabs/slapo
⭐️Paper: https://arxiv.org/abs/2302.08005v1
💻 Docs: https://awslabs.github.io/slapo/
@Machine_learn
Slapo is a schedule language for progressive optimization of large deep learning model training.
pip3 install slapo
🖥 Github: https://github.com/awslabs/slapo
⭐️Paper: https://arxiv.org/abs/2302.08005v1
💻 Docs: https://awslabs.github.io/slapo/
@Machine_learn
👍2