Machine learning books and papers
22.4K subscribers
967 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn
Download Telegram
Core.ML.Survival.Guide.pdf
6.9 MB
Core ML Survival Guide: More than you ever wanted to know about mlmodel files and the Core ML and Vision APIs (2020)
#Book #ML
@Machine_leaen
❀4πŸ‘1
Deploying TensorFlow Vision Models in Hugging Face with TF Serving

https://huggingface.co/blog/tf-serving-vision

@Machine_learn
πŸ”₯2
πŸ“‘ Learning Visual Representations via Language-Guided Sampling

New approach deviates from image-text contrastive learning by relying on pre-trained language models to guide the learning rather than minimize a cross-modal similarity.



πŸ–₯ Github: https://github.com/mbanani/lgssl

⭐️Paper: https://arxiv.org/abs/2302.12248v1

⏩Pre-trained Checkpoints: https://www.dropbox.com/sh/me6nyiewlux1yh8/AAAPrD2G0_q_ZwExsVOS_jHQa?dl=0

πŸ’» Dataset : https://paperswithcode.com/dataset/redcaps

@Machine_learn
πŸ‘5
πŸ–₯ pyribs: A Bare-Bones Python Library for Quality Diversity Optimization

A bare-bones Python library for quality diversity optimization.

πŸ–₯ Github: https://github.com/icaros-usc/pyribs

⏩ Paper: https://arxiv.org/abs/2303.00191v1

⭐️ Dataset: https://paperswithcode.com/dataset/quality-diversity-benchmark-suite

@Machine_learn
πŸ‘2❀1
what you know about chatGPT?
Do you want us to give you information about this on the channel?
Anonymous Poll
80%
πŸ‘
20%
πŸ‘Ž
πŸ‘1
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
#python #2023 #book
@Machine_learn
πŸ‘3πŸ”₯1
Hariom_Tatsat,_Sahil_Puri_,_Brad_Lookabaugh_Machine_Learning_and.pdf
13.6 MB
Machine Learning & Data Science Blueprints for Finance From Building
Trading Strategies to Robo-Advisors Using Python
Authors: Hariom Tatsat, Sahil Puri & Brad Lookabaugh (2021)
#ML #book
@Machin_learn
❀7πŸ”₯1
Packt.Agile.Model-Based.Systems.Engineering.Cookbook.pdf
35.4 MB
Agile Model-Based Systems Engineering Cookbook: Improve system development by applying proven recipes for effective agile systems engineering, 2nd Edition (2023)
#Book #2023
@Machine_learn
❀4
ChatGPT.Prompts.Mastering.pdf
757.3 KB
ChatGPT Prompts Mastering: A Guide to Crafting Clear and Effective Prompts – Beginners to Advanced Guide (2023)
Author:
Christian Brown
#book #GPT #2023
@Machine_learn
πŸ”₯6❀1
⏩ OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception.

OpenOccupancy first surrounding semantic occupancy perception benchmar.

πŸ–₯ Github: https://github.com/jeffwang987/openoccupancy

⏩ Paper: https://arxiv.org/abs/2303.03991v1

⭐️ Dataset: https://paperswithcode.com/dataset/synthcity

πŸ’¨ Project: https://www.mmlab-ntu.com/project/styleganex/

@Machine_learn
❀2πŸ‘1
Apress.Pro.Deep.Learning.pdf
15.9 MB
Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python (2023)
Author
: Santanu Pattanayak
#book #DL #Book #2023

@Machine_learn
πŸ”₯8❀3πŸ‘3
Apress.Explainable.AI.Recipes.pdf
8.2 MB
Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python (2023)
Author
: Pradeepta Mishra
#XAI #Ai #DL #Python
#2023
@Machine_learn
❀5
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
Author
: Alex Martelli
#book #python #2023

@Machine_learn
πŸ‘3❀2
Python Deep Learning.pdf
24 MB
Book: Python Deep Learning
Second Edition(Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow)
Authors: Ivan Vasilev,
Daniel Slater Gianmario ,Spacagna Peter, and Roelants Valentino Zocca
ISBN: 978-1-78934-846-0
year: 2019
pages: 379
Tags: #Python #Tensorflow #Keras #DL
@Machine_learn
❀8
Data-Mining-in-Python.pdf
12.8 MB
Book: DATA MINING
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
❀6πŸ‘6
lecun-20230324-nyuphil.pdf
30.5 MB
Slide: Do large language models need sensory grounding for meaning and understanding
Supervised learning (SL)
Reinforcement learning (RL)
Self-Supervised Learning (SSL)
year:2023
pages:38
tags: #DL #ML #SL #RL #SSL
@Machine_learn
❀6πŸ‘3πŸ”₯1
⭐️Title: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace

πŸ–₯ Github: https://github.com/microsoft/JARVIS

⏩ Paper: https://arxiv.org/abs/2303.17604v1

@Machine_learn
πŸ‘1