Machine learning books and papers
22.6K subscribers
969 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn
Download Telegram
Neural networks in NLP are vulnerable to adversarially crafted inputs.

We show that they can be trained to become certifiably robust against input perturbations such as typos and synonym substitution in text classification:

https://arxiv.org/abs/1909.01492
Forwarded from Machine learning books and papers (Ramin Mousa)
discriminative :
1:#Regression
2:#Logistic regression
3:#decision tree(Hunt)
4:#neural network(traditional network, deep network)
5:#Support Vector Machine(SVM)
Generative:
1:#Hidden Markov model
2:#Naive bayes
3:#K-nearest neighbor(KNN)
4:#Generative adversarial networks(GANs)
Deep learning:
1:CNN
R_CNN
Fast-RCNN
Mask-RCNN
2:RNN
3:LSTM
4:CapsuleNet
5:Siamese:
siamese cnn
siamese lstm
siamese bi-lstm
siamese CapsuleNet
6:time series data
SVR
DT(cart)
Random Forest linear
Bagging
Boosting

جهت درخواست و راهنمایی در رابطه با پیاده سازی مقالات و پایان نامه ها در رابطه با مباحث deep learning و machine learning با ایدی زیر در ارتباط باشید
@Raminmousa
Forwarded from بینام
Applied Deep Learning (en).pdf
12.6 MB
Applied Deep Learning — Umberto Michelucci (en) 2018

@Machine_learn
Forwarded from Machinelearning
Linear Algebra Vectors.pdf
7.5 MB
Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares

https://web.stanford.edu/~boyd/vmls/

@ai_machinelearning_big_data