β© PODA: Prompt-driven Zero-shot Domain Adaptation
.
π₯ Github: https://github.com/astra-vision/poda
β© Paprer: https://arxiv.org/abs/2212.03241v1
β€οΈ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
βοΈ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
.
π₯ Github: https://github.com/astra-vision/poda
β© Paprer: https://arxiv.org/abs/2212.03241v1
β€οΈ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
βοΈ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
β€2
πΌ IncepFormer: Efficient Inception Transformer with Pyramid Pooling for Semantic Segmentation
π₯ Github: https://github.com/shendu0321/incepformer
βοΈ Project: https://github.com/shendu0321/IncepFormer
π Paper: https://arxiv.org/abs/2212.03035v1
β‘οΈ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
π₯ Github: https://github.com/shendu0321/incepformer
βοΈ Project: https://github.com/shendu0321/IncepFormer
π Paper: https://arxiv.org/abs/2212.03035v1
β‘οΈ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
β€2
β’(Multi-Modal Image Fusion)
γ(nfrared and visible image fusion)
γ (Medical image fusion)
β’(Digital Photography Image Fusion)
γ(Multi-exposure image fusion)
γ(Multi-focus image fusion)
β’ (Remote Sensing Image Fusion)
γ(Pansharpening)
β’(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
γ(nfrared and visible image fusion)
γ (Medical image fusion)
β’(Digital Photography Image Fusion)
γ(Multi-exposure image fusion)
γ(Multi-focus image fusion)
β’ (Remote Sensing Image Fusion)
γ(Pansharpening)
β’(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
β
pypop7 (Pure-PYthon library of POPulation-based black-box OPtimization)
π₯ Github: https://github.com/evolutionary-intelligence/pypop
β© Paprer: https://arxiv.org/abs/2212.05652v1
βοΈ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
$ pip install pypop7
π₯ Github: https://github.com/evolutionary-intelligence/pypop
β© Paprer: https://arxiv.org/abs/2212.05652v1
βοΈ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
βοΈ ECON: Explicit Clothed humans Obtained from Normals
π₯ Github: https://github.com/YuliangXiu/ECON
β© Paprer: https://arxiv.org/abs/2212.07422
π Demo: https://github.com/YuliangXiu/ECON#demo
βοΈ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn
π₯ Github: https://github.com/YuliangXiu/ECON
β© Paprer: https://arxiv.org/abs/2212.07422
π Demo: https://github.com/YuliangXiu/ECON#demo
βοΈ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
β
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
π₯ Github: https://github.com/cvg/deeplsd
β© Paprer: https://arxiv.org/abs/2212.07766v1
βοΈ Dataset: https://paperswithcode.com/dataset/hpatches
@Machine_learn
git clone --recurse-submodules git@github.com:cvg/DeepLSD.git
cd DeepLSD
π₯ Github: https://github.com/cvg/deeplsd
β© Paprer: https://arxiv.org/abs/2212.07766v1
βοΈ Dataset: https://paperswithcode.com/dataset/hpatches
@Machine_learn
β© GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
π₯ Github: https://github.com/chenhongyiyang/gpvit
β‘οΈPaprer: https://arxiv.org/abs/2212.06795v1
βοΈData Preparation: https://paperswithcode.com/dataset/must-c
@Machine_learn
π₯ Github: https://github.com/chenhongyiyang/gpvit
β‘οΈPaprer: https://arxiv.org/abs/2212.06795v1
βοΈData Preparation: https://paperswithcode.com/dataset/must-c
@Machine_learn
β€1
This media is not supported in your browser
VIEW IN TELEGRAM
β
οΈ JRBD: Egocentric Perception of Humans
βοΈ Dataset: https://jrdb.erc.monash.edu/
π₯ Github: https://github.com/JRDB-dataset/jrdb_toolkit/
β© JRDB-Pose: https://jrdb.erc.monash.edu/dataset/pose#toolkit
β Paper: arxiv.org/pdf/1910.11792.pdf
@Machine_learn
βοΈ Dataset: https://jrdb.erc.monash.edu/
π₯ Github: https://github.com/JRDB-dataset/jrdb_toolkit/
β© JRDB-Pose: https://jrdb.erc.monash.edu/dataset/pose#toolkit
β Paper: arxiv.org/pdf/1910.11792.pdf
@Machine_learn
β€1
β‘οΈ MVTN: Learning Multi-View Transformations for 3D Understanding
π₯Github: https://github.com/ajhamdi/mvtorch
βοΈ Paper: https://arxiv.org/abs/2212.13462v1
β© Dataset: https://paperswithcode.com/dataset/modelnet
β© Π‘lassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb
β‘οΈ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb
@Machine_learn
π₯Github: https://github.com/ajhamdi/mvtorch
βοΈ Paper: https://arxiv.org/abs/2212.13462v1
β© Dataset: https://paperswithcode.com/dataset/modelnet
β© Π‘lassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb
β‘οΈ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
When you are presenting a topic in the class and make eye contact with your friendsπΉπΉπΉ
@Machine_learn
@Machine_learn
π2π1
βοΈ The CropAndWeed Dataset: A Multi-Modal Learning Approach for Efficient Crop and Weed Manipulation
π₯ Github: https://paperswithcode.com/paper/the-cropandweed-dataset-a-multi-modal
β© Paper: https://openaccess.thecvf.com/content/WACV2023/html/Steininger_The_CropAndWeed_Dataset_A_Multi-Modal_Learning_Approach_for_Efficient_Crop_WACV_2023_paper.html
β‘οΈ Datasets: https://paperswithcode.com/dataset/cropandweed-dataset
@Machine_learn
π₯ Github: https://paperswithcode.com/paper/the-cropandweed-dataset-a-multi-modal
β© Paper: https://openaccess.thecvf.com/content/WACV2023/html/Steininger_The_CropAndWeed_Dataset_A_Multi-Modal_Learning_Approach_for_Efficient_Crop_WACV_2023_paper.html
β‘οΈ Datasets: https://paperswithcode.com/dataset/cropandweed-dataset
@Machine_learn
π4
Math-for-Programmers.pdf
27.7 MB
MEAP Edition
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
π6π5
book.pdf
52.1 MB
π8β€2
Build_a_Career_in_Data_Science_by_Emily_Robinson,_Jacqueline_Nolis.pdf
12.3 MB
Build a Career in Data Science
EMILY ROBINSON AND JACQUELINE NOLIS
#Data_Science
#Book
#ML
@Machine_learn
EMILY ROBINSON AND JACQUELINE NOLIS
#Data_Science
#Book
#ML
@Machine_learn
π1
π¬ GLIGEN: Open-Set Grounded Text-to-Image Generation
GLIGENβs zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.
βοΈ Project: https://gligen.github.io/
βοΈ Demo: https://aka.ms/gligen
β οΈ Paper: https://arxiv.org/abs/2301.07093
π₯ Github: https://github.com/gligen/GLIGEN
@Machine_learn
GLIGENβs zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.
βοΈ Project: https://gligen.github.io/
βοΈ Demo: https://aka.ms/gligen
β οΈ Paper: https://arxiv.org/abs/2301.07093
π₯ Github: https://github.com/gligen/GLIGEN
@Machine_learn
Apress.PyTorch.pdf
5.1 MB
PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models, 2nd Edition (2022)
#Pythorch #book #python
@Machin_learn
#Pythorch #book #python
@Machin_learn
π₯1