Задачи и жизненный цикл в Gradle
Task API: Task, DefaultTask, @TaskAction
Задачи (tasks) — это основная единица работы в Gradle, представляющая такие действия, как компиляция, тестирование или упаковка. Task API предоставляет инструменты для создания и настройки задач.
Основные компоненты
Task:
Интерфейс org.gradle.api.Task, определяющий базовую функциональность задачи (например, выполнение, зависимости).
Все задачи в Gradle реализуют этот интерфейс.
DefaultTask:
Класс org.gradle.api.DefaultTask, стандартная реализация интерфейса Task.
Используется для создания пользовательских задач.
Пример (Groovy DSL):
@TaskAction:
Аннотация, указывающая метод, который выполняется при запуске задачи.
Пример (Kotlin DSL):
Gradle Lifecycle
Жизненный цикл Gradle состоит из трех фаз: Initialization, Configuration и Execution. Каждая фаза выполняет определенные функции и влияет на производительность и память.
Initialization Phase:
Gradle загружает settings.gradle для определения структуры проекта (корневое имя, подмодули).
Создает объекты Project для корневого проекта и подпроектов.
Устанавливает начальные настройки, такие как репозитории и плагины.
Configuration Phase:
Gradle парсит все файлы build.gradle, создавая модель проекта и граф задач (Directed Acyclic Graph, DAG).
Все скрипты конфигурации выполняются, даже для задач, которые не будут запущены.
Пример: Определение зависимостей, задач и плагинов.
Оптимизация: Используйте флаг --configure-on-demand для конфигурации только необходимых модулей:
Execution Phase:
Gradle выполняет задачи, указанные в командной строке (например, ./gradlew build), в порядке, определенном DAG.
Инкрементальность пропускает задачи, чьи входные/выходные данные не изменились (см. ниже).
Нюансы:
Конфигурация выполняется всегда, что замедляет сборку, особенно для крупных проектов.
Gradle Daemon сохраняет JVM между сборками, ускоряя повторные запуски, но увеличивая базовое потребление памяти (200-300 МБ).
Используйте --no-daemon для одноразовых сборок:
#Java #middle #Gradle #Task #Lifecycle
Task API: Task, DefaultTask, @TaskAction
Задачи (tasks) — это основная единица работы в Gradle, представляющая такие действия, как компиляция, тестирование или упаковка. Task API предоставляет инструменты для создания и настройки задач.
Основные компоненты
Task:
Интерфейс org.gradle.api.Task, определяющий базовую функциональность задачи (например, выполнение, зависимости).
Все задачи в Gradle реализуют этот интерфейс.
DefaultTask:
Класс org.gradle.api.DefaultTask, стандартная реализация интерфейса Task.
Используется для создания пользовательских задач.
Пример (Groovy DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction
class CustomTask extends DefaultTask {
@TaskAction
void executeTask() {
println 'Executing custom task'
}
}
tasks.register('customTask', CustomTask)
@TaskAction:
Аннотация, указывающая метод, который выполняется при запуске задачи.
Пример (Kotlin DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction
open class CustomTask : DefaultTask() {
@TaskAction
fun executeTask() {
println("Executing custom task")
}
}
tasks.register<CustomTask>("customTask")
В памяти: Каждая задача представлена как объект в JVM, содержащий метаданные (имя, зависимости, действия). Gradle загружает все задачи в память во время фазы конфигурации, что увеличивает потребление памяти пропорционально их количеству. Плагины, такие как java, добавляют множество задач (например, compileJava, test), увеличивая overhead.
Gradle Lifecycle
Жизненный цикл Gradle состоит из трех фаз: Initialization, Configuration и Execution. Каждая фаза выполняет определенные функции и влияет на производительность и память.
Initialization Phase:
Gradle загружает settings.gradle для определения структуры проекта (корневое имя, подмодули).
Создает объекты Project для корневого проекта и подпроектов.
Устанавливает начальные настройки, такие как репозитории и плагины.
В памяти: Минимальная фаза по потреблению ресурсов, так как загружается только settings.gradle и связанные плагины. Объем памяти зависит от количества модулей (обычно 50-100 МБ).
Configuration Phase:
Gradle парсит все файлы build.gradle, создавая модель проекта и граф задач (Directed Acyclic Graph, DAG).
Все скрипты конфигурации выполняются, даже для задач, которые не будут запущены.
Пример: Определение зависимостей, задач и плагинов.
В памяти: Самая ресурсоемкая фаза, так как Gradle загружает и компилирует все скрипты, плагины и зависимости. Для крупных проектов может потребоваться 500-1000 МБ памяти.
Оптимизация: Используйте флаг --configure-on-demand для конфигурации только необходимых модулей:
./gradlew build --configure-on-demand
Execution Phase:
Gradle выполняет задачи, указанные в командной строке (например, ./gradlew build), в порядке, определенном DAG.
Инкрементальность пропускает задачи, чьи входные/выходные данные не изменились (см. ниже).
В памяти: Зависит от сложности задач. Например, compileJava загружает исходные файлы и зависимости, а test — тестовые классы и фреймворки. Параллельное выполнение (--parallel) увеличивает пиковое потребление памяти.
Нюансы:
Конфигурация выполняется всегда, что замедляет сборку, особенно для крупных проектов.
Gradle Daemon сохраняет JVM между сборками, ускоряя повторные запуски, но увеличивая базовое потребление памяти (200-300 МБ).
Используйте --no-daemon для одноразовых сборок:
./gradlew build --no-daemon
#Java #middle #Gradle #Task #Lifecycle
👍2
Task Graph, зависимости между задачами
Gradle строит Directed Acyclic Graph (DAG) для задач, где узлы — задачи, а ребра — зависимости. Это определяет порядок выполнения.
Зависимости между задачами
dependsOn:
Указывает, что задача зависит от выполнения других задач.
Пример:
mustRunAfter:
Определяет порядок выполнения без строгой зависимости.
Пример:
finalizedBy:
Указывает задачу, которая выполняется после завершения текущей, даже при ошибке.
Пример:
Incremental Build и Up-to-Date Checks
Gradle оптимизирует производительность за счет инкрементальной сборки, пропуская задачи, чьи входные/выходные данные не изменились.
Механизм:
Gradle проверяет хэши входных (исходные файлы, свойства) и выходных данных (скомпилированные классы, JAR).
Если хэши совпадают, задача помечается как up-to-date и пропускается.
Пример вывода:
Пример настройки:
Нюансы:
Неправильная настройка входов/выходов может привести к ненужному выполнению задач.
Используйте --info для анализа, почему задача не была пропущена:
Gradle Inputs/Outputs (Task Inputs/Outputs)
Задачи Gradle имеют входы и выходы, которые определяют, что влияет на выполнение задачи и что она производит.
Inputs:
Файлы, свойства или другие данные, от которых зависит задача.
Пример:
Outputs:
Файлы или директории, создаваемые задачей.
Пример:
Нюансы:
Явно указывайте входы/выходы для кастомных задач, чтобы включить инкрементальность.
Используйте inputs.property для не-файловых входов:
#Java #middle #Gradle #Task #Lifecycle
Gradle строит Directed Acyclic Graph (DAG) для задач, где узлы — задачи, а ребра — зависимости. Это определяет порядок выполнения.
Зависимости между задачами
dependsOn:
Указывает, что задача зависит от выполнения других задач.
Пример:
task compileJava {
doLast { println 'Compiling Java' }
}
task test(dependsOn: compileJava) {
doLast { println 'Running tests' }
}
Gradle выполнит compileJava перед test.
mustRunAfter:
Определяет порядок выполнения без строгой зависимости.
Пример:
task taskA {
doLast { println 'Task A' }
}
task taskB {
mustRunAfter 'taskA'
doLast { println 'Task B' }
}
Если обе задачи выполняются, taskB будет после taskA, но taskB может выполняться отдельно.
finalizedBy:
Указывает задачу, которая выполняется после завершения текущей, даже при ошибке.
Пример:
task build {
doLast { println 'Building' }
}
task cleanUp {
doLast { println 'Cleaning up' }
}
build.finalizedBy cleanUp
В памяти: DAG задач хранится как структура данных в JVM, где каждая задача — объект с метаданными (зависимости, действия). Размер графа пропорционален количеству задач, что может увеличить потребление памяти до нескольких сотен МБ в крупных проектах.
Incremental Build и Up-to-Date Checks
Gradle оптимизирует производительность за счет инкрементальной сборки, пропуская задачи, чьи входные/выходные данные не изменились.
Механизм:
Gradle проверяет хэши входных (исходные файлы, свойства) и выходных данных (скомпилированные классы, JAR).
Если хэши совпадают, задача помечается как up-to-date и пропускается.
Пример вывода:
> Task :compileJava UP-TO-DATE
Пример настройки:
tasks.named('compileJava') {
inputs.files('src/main/java')
outputs.dir('build/classes/java/main')
}
В памяти: Gradle хранит хэши входов/выходов в памяти и в ~/.gradle/caches для сравнения. Это добавляет небольшой overhead (около 10-50 МБ), но значительно ускоряет сборку.
Нюансы:
Неправильная настройка входов/выходов может привести к ненужному выполнению задач.
Используйте --info для анализа, почему задача не была пропущена:
./gradlew build --info
Gradle Inputs/Outputs (Task Inputs/Outputs)
Задачи Gradle имеют входы и выходы, которые определяют, что влияет на выполнение задачи и что она производит.
Inputs:
Файлы, свойства или другие данные, от которых зависит задача.
Пример:
task processFiles {
inputs.files fileTree('src/main/resources')
doLast {
println 'Processing files'
}
}
Outputs:
Файлы или директории, создаваемые задачей.
Пример:
task generateReport {
outputs.file file('build/report.txt')
doLast {
file('build/report.txt').text = 'Report content'
}
}
В памяти: Gradle хранит метаданные входов/выходов в памяти и кэширует хэши в ~/.gradle/caches. Для задач с большим количеством файлов (например, compileJava) это увеличивает потребление памяти, так как Gradle сканирует файловую систему.
Нюансы:
Явно указывайте входы/выходы для кастомных задач, чтобы включить инкрементальность.
Используйте inputs.property для не-файловых входов:
task customTask {
inputs.property 'version', project.version
doLast { println "Version: ${project.version}" }
}
#Java #middle #Gradle #Task #Lifecycle
👍1
Do-first/do-last и ленивость (Provider, Property)
Gradle поддерживает гибкую настройку задач через doFirst и doLast, а также ленивую конфигурацию через Provider и Property.
doFirst и doLast:
doFirst: Добавляет действие в начало выполнения задачи.
doLast: Добавляет действие в конец выполнения задачи.
Пример:
Ленивость (Provider, Property):
Gradle использует ленивую оценку для отсрочки вычислений до фазы выполнения.
Provider: Интерфейс для ленивых значений.def version = providers.provider { project.version }
Property: Для управления свойствами задачи.
Gradle Listeners и хуки
Gradle предоставляет хуки для мониторинга и настройки жизненного цикла и задач.
BuildListener:
Устаревший интерфейс для мониторинга событий сборки.
Пример:
TaskExecutionListener:
Отслеживает выполнение задач.
Пример:
Project.afterEvaluate:
Выполняется после фазы конфигурации.
Пример:
Нюансы:
Используйте хуки с осторожностью, чтобы избежать замедления сборки.
Для сложной логики создавайте плагины вместо хуков.
Gradle Build Cache
Build Cache позволяет кэшировать результаты задач для повторного использования между сборками или машинами.
Настройка:
Как работает:
Gradle кэширует выходные данные задач (например, скомпилированные классы, JAR) в ~/.gradle/caches/build-cache или на удаленном сервере.
При повторной сборке Gradle проверяет хэши входов/выходов и использует кэшированные результаты, если они совпадают.
Пример: Задача compileJava кэширует классы в build/classes.
Использование:
Включите кэш:
Очистка локального кэша:
Нюансы:
Настройте входы/выходы задач точно, чтобы кэш работал корректно.
Build Cache наиболее эффективен для CI/CD, где результаты задач переиспользуются между сборками.
#Java #middle #Gradle #Task #Lifecycle
Gradle поддерживает гибкую настройку задач через doFirst и doLast, а также ленивую конфигурацию через Provider и Property.
doFirst и doLast:
doFirst: Добавляет действие в начало выполнения задачи.
doLast: Добавляет действие в конец выполнения задачи.
Пример:
task example {
doFirst { println 'Starting task' }
doLast { println 'Ending task' }
}
Ленивость (Provider, Property):
Gradle использует ленивую оценку для отсрочки вычислений до фазы выполнения.
Provider: Интерфейс для ленивых значений.def version = providers.provider { project.version }
task printVersion {
doLast {
println "Version: ${version.get()}"
}
}
Property: Для управления свойствами задачи.
task customTask {
def outputFile = objects.property(String)
outputFile.set('build/output.txt')
doLast {
println "Output: ${outputFile.get()}"
}
}
В памяти: doFirst и doLast добавляют действия как объекты в задачу, минимально увеличивая память. Ленивые Provider и Property хранят ссылки на значения, а не сами значения, что оптимизирует память до их вычисления в фазе выполнения.
Gradle Listeners и хуки
Gradle предоставляет хуки для мониторинга и настройки жизненного цикла и задач.
BuildListener:
Устаревший интерфейс для мониторинга событий сборки.
Пример:
gradle.buildFinished {
println 'Build completed'
}
TaskExecutionListener:
Отслеживает выполнение задач.
Пример:
gradle.taskGraph.whenReady {
println 'Task graph is ready'
}
Project.afterEvaluate:
Выполняется после фазы конфигурации.
Пример:
project.afterEvaluate {
println 'Project configured'
}
В памяти: Хуки создают дополнительные объекты-слушатели в памяти, увеличивая overhead. Для крупных проектов с множеством слушателей это может добавить 10-50 МБ памяти.
Нюансы:
Используйте хуки с осторожностью, чтобы избежать замедления сборки.
Для сложной логики создавайте плагины вместо хуков.
Gradle Build Cache
Build Cache позволяет кэшировать результаты задач для повторного использования между сборками или машинами.
Настройка:
buildCache {
local {
enabled = true
}
remote(HttpBuildCache) {
url = 'https://cache.example.com/'
push = true
}
}
Как работает:
Gradle кэширует выходные данные задач (например, скомпилированные классы, JAR) в ~/.gradle/caches/build-cache или на удаленном сервере.
При повторной сборке Gradle проверяет хэши входов/выходов и использует кэшированные результаты, если они совпадают.
Пример: Задача compileJava кэширует классы в build/classes.
Использование:
Включите кэш:
./gradlew build --build-cache
Очистка локального кэша:
rm -rf ~/.gradle/caches/build-cache
В памяти: Build Cache требует хранения хэшей и метаданных в памяти во время выполнения, что добавляет 50-100 МБ overhead. Удаленный кэш увеличивает сетевые операции, но снижает локальные вычисления.
Нюансы:
Настройте входы/выходы задач точно, чтобы кэш работал корректно.
Build Cache наиболее эффективен для CI/CD, где результаты задач переиспользуются между сборками.
#Java #middle #Gradle #Task #Lifecycle
👍1
Плагины и расширение функциональности в Gradle
Плагины в Gradle — это основной механизм расширения функциональности, позволяющий добавлять задачи, конфигурации и зависимости для автоматизации сборки. Они обеспечивают модульность и гибкость, позволяя адаптировать Gradle под конкретные проекты. Эта статья подробно описывает типы плагинов, встроенные и сторонние плагины, создание собственных плагинов, публикацию на Gradle Plugin Portal, стратегии разрешения плагинов и управление через pluginManagement. Особое внимание уделяется внутренним механизмам, управлению памятью и нюансам.
Типы плагинов
Gradle поддерживает два основных типа плагинов: Script Plugins и Binary Plugins.
Script Plugin (apply from)
Описание: Скриптовые плагины — это файлы Gradle (обычно .gradle или .gradle.kts), которые содержат логику сборки и подключаются к build.gradle через apply from.
Пример (Groovy DSL):
Содержимое other.gradle:
Kotlin DSL:
Содержимое other.gradle.kts:
Использование: Для небольших проектов или повторно используемых фрагментов кода в рамках одного проекта.
Binary Plugin (apply plugin:)
Описание: Бинарные плагины — это скомпилированные Java/Groovy/Kotlin-классы, распространяемые как JAR-файлы. Они подключаются через apply plugin или блок plugins.
Пример (Groovy DSL):
plugins {} vs apply plugin:
plugins {}:
Современный способ подключения плагинов, введенный в Gradle 2.1.
Использует декларативный синтаксис и разрешает плагины из Gradle Plugin Portal или репозиториев.
Пример:
Kotlin DSL:
Преимущества: Автоматическое разрешение версий, поддержка Gradle Plugin Portal, меньшая вероятность ошибок.
apply plugin:
Традиционный способ, используемый в старых версиях Gradle.
Требует явного указания зависимости в buildscript:
Недостатки: Более многословный, требует ручного управления зависимостями.
Рекомендация: Используйте plugins {} для современных проектов, так как он проще и поддерживает автоматическое разрешение.
#Java #middle #Gradle #Task #Plugin
Плагины в Gradle — это основной механизм расширения функциональности, позволяющий добавлять задачи, конфигурации и зависимости для автоматизации сборки. Они обеспечивают модульность и гибкость, позволяя адаптировать Gradle под конкретные проекты. Эта статья подробно описывает типы плагинов, встроенные и сторонние плагины, создание собственных плагинов, публикацию на Gradle Plugin Portal, стратегии разрешения плагинов и управление через pluginManagement. Особое внимание уделяется внутренним механизмам, управлению памятью и нюансам.
Типы плагинов
Gradle поддерживает два основных типа плагинов: Script Plugins и Binary Plugins.
Script Plugin (apply from)
Описание: Скриптовые плагины — это файлы Gradle (обычно .gradle или .gradle.kts), которые содержат логику сборки и подключаются к build.gradle через apply from.
Пример (Groovy DSL):
apply from: 'other.gradle'
Содержимое other.gradle:
task customTask {
doLast {
println 'Custom task from script plugin'
}
}
Kotlin DSL:
apply(from = "other.gradle.kts")
Содержимое other.gradle.kts:
tasks.register("customTask") {
doLast {
println("Custom task from script plugin")
}
}
Использование: Для небольших проектов или повторно используемых фрагментов кода в рамках одного проекта.
В памяти: Скриптовые плагины парсятся как обычные Gradle-скрипты, добавляя задачи и конфигурации в модель проекта. Это увеличивает потребление памяти, аналогично основному build.gradle, но overhead минимален (10-50 МБ).
Binary Plugin (apply plugin:)
Описание: Бинарные плагины — это скомпилированные Java/Groovy/Kotlin-классы, распространяемые как JAR-файлы. Они подключаются через apply plugin или блок plugins.
Пример (Groovy DSL):
apply plugin: 'java'
В памяти: Бинарные плагины загружаются как Java-классы в JVM, включая их зависимости. Это увеличивает потребление памяти пропорционально сложности плагина (50-200 МБ для крупных плагинов, таких как android).
plugins {} vs apply plugin:
plugins {}:
Современный способ подключения плагинов, введенный в Gradle 2.1.
Использует декларативный синтаксис и разрешает плагины из Gradle Plugin Portal или репозиториев.
Пример:
plugins {
id 'java'
id 'org.springframework.boot' version '2.7.18'
}
Kotlin DSL:
plugins {
java
id("org.springframework.boot") version "2.7.18"
}
Преимущества: Автоматическое разрешение версий, поддержка Gradle Plugin Portal, меньшая вероятность ошибок.
apply plugin:
Традиционный способ, используемый в старых версиях Gradle.
Требует явного указания зависимости в buildscript:
buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.7.18'
}
}
apply plugin: 'org.springframework.boot'
Недостатки: Более многословный, требует ручного управления зависимостями.
В памяти: plugins {} использует внутренний механизм разрешения Gradle, минимизируя overhead по сравнению с buildscript, который загружает дополнительные зависимости в classpath.
Рекомендация: Используйте plugins {} для современных проектов, так как он проще и поддерживает автоматическое разрешение.
#Java #middle #Gradle #Task #Plugin
👍2
Built-in плагины
Gradle поставляется с набором встроенных плагинов, которые покрывают стандартные сценарии сборки.
java:
Добавляет задачи для компиляции, тестирования и упаковки Java-проектов (например, compileJava, test, jar).
Пример:
application:
Добавляет задачи для запуска Java-приложений (run, installDist).
Пример:
base:
Базовый плагин, добавляющий задачи жизненного цикла (clean, assemble, check).
Пример:
java-library:
Расширяет java, добавляя конфигурации api и implementation для библиотек.
Пример:
checkstyle:
Интегрирует проверку стиля кода с помощью Checkstyle.
Пример:
maven-publish:
Позволяет публиковать артефакты в Maven-репозитории.
Пример:
#Java #middle #Gradle #Task #Plugin
Gradle поставляется с набором встроенных плагинов, которые покрывают стандартные сценарии сборки.
java:
Добавляет задачи для компиляции, тестирования и упаковки Java-проектов (например, compileJava, test, jar).
Пример:
plugins {
id 'java'
}
В памяти: Загружает задачи и конфигурации (implementation, testImplementation), увеличивая модель проекта (50-100 МБ).
application:
Добавляет задачи для запуска Java-приложений (run, installDist).
Пример:
plugins {
id 'application'
}
application {
mainClass = 'com.example.Main'
}
В памяти: Добавляет задачи и classpath, минимально увеличивая overhead.
base:
Базовый плагин, добавляющий задачи жизненного цикла (clean, assemble, check).
Пример:
plugins {
id 'base'
}
В памяти: Легковесный, добавляет минимальное количество задач.
java-library:
Расширяет java, добавляя конфигурации api и implementation для библиотек.
Пример:
plugins {
id 'java-library'
}
dependencies {
api 'org.apache.commons:commons-lang3:3.12.0'
}
В памяти: Увеличивает граф зависимостей за счет дополнительных конфигураций.
checkstyle:
Интегрирует проверку стиля кода с помощью Checkstyle.
Пример:
plugins {
id 'checkstyle'
}
checkstyle {
toolVersion = '8.45'
configFile = file('config/checkstyle/checkstyle.xml')
}
В памяти: Загружает конфигурацию Checkstyle и отчеты, увеличивая потребление памяти (50-100 МБ для крупных проектов).
maven-publish:
Позволяет публиковать артефакты в Maven-репозитории.
Пример:
plugins {
id 'maven-publish'
}
publishing {
publications {
mavenJava(MavenPublication) {
from components.java
}
}
repositories {
maven {
url 'https://nexus.example.com/repository/maven-releases'
}
}
}
В памяти: Загружает метаданные публикации и артефакты, увеличивая overhead при публикации.
#Java #middle #Gradle #Task #Plugin
👍2