Java for Beginner
704 subscribers
613 photos
166 videos
12 files
958 links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
OpenIDE:
Плюсы: Российская IDE с открытым исходным кодом, основана на IntelliJ IDEA Community Edition. Поддерживает Java 24, Spring, Docker, Maven, Gradle и интеграцию с российским GitFlic. Не зависит от зарубежных серверов, что исключает риски блокировки. Имеет собственный маркетплейс с более чем 300 плагинами. Работает быстрее оригинальной IntelliJ IDEA за счет удаления телеметрии и проприетарных компонентов. Встроенная поддержка Spring и Docker. Удалена вся телеметрия IntelliJ IDEA.
Минусы: Находится на стадии бета-тестирования. Поддерживает только
Java и Kotlin, хотя в планах добавление Go, TypeScript, Rust. Некоторые функции, например работа с базами данных, пока ограничены.
Когда использовать: Для российских разработчиков, которым важна независимость от зарубежных сервисов и открытый код. Подходит для проектов, требующих поддержки
Java 24 и Spring.

GigaIDE:
Плюсы: Российская IDE от Сбера, также основана на IntelliJ IDEA Community Edition. Поддерживает Java, Kotlin, Groovy, Scala, Python, JavaScript, TypeScript, SQL. Включает AI-ассистент GigaCode для автодополнения и генерации кода. Интеграция с GitVerse, GitHub, Bitbucket. Доступна в версиях Desktop и Cloud. Поддержка Spring Framework ожидается в профессиональной версии.
Минусы: Код закрыт, процесс разработки менее прозрачен, чем у OpenIDE. Зависимость от одной компании (Сбер) может быть риском. Работа с базами данных ограничена, требуется плагин Database Navigator.
Когда использовать: Для разработчиков, которым нужен привычный интерфейс IntelliJ IDEA с AI-ассистентом и поддержкой множества языков. Подходит для корпоративных проектов в России.


Cursor:
Плюсы: Современная IDE на базе VS Code с мощным AI-ассистентом, который понимает контекст проекта, предлагает сложные конструкции кода и помогает с рефакторингом. Поддерживает более 30 языков, включая Java. Упрощает написание кода для новичков благодаря ИИ.
Минусы: Платная подписка (от $20/месяц с квотами на AI-запросы). Требует настройки для полноценной работы с
Java (установка Java Extension Pack). UI может быть менее удобным для профессиональных разработчиков по сравнению с IntelliJ IDEA.
Когда использовать: Для новичков или разработчиков, которые хотят использовать ИИ для ускорения кодирования. Подходит для небольших проектов или экспериментов.


Рекомендация: Для новичков я советую IntelliJ IDEA Community Edition как основной выбор благодаря интуитивному интерфейсу и мощным функциям. OpenIDE и GigaIDE — отличные альтернативы для российских разработчиков, особенно если важна независимость от зарубежных сервисов. Cursor подойдет, если вы хотите попробовать ИИ-поддержку, но требует дополнительных затрат и настройки для Java.



Установка и настройка IntelliJ IDEA

Теперь давайте разберем, как установить и настроить IntelliJ IDEA Community Edition для разработки на Java. Мы будем использовать Java 17 (LTS), но шаги подойдут и для Java 21 или 24.

Шаг 1: Скачивание IntelliJ IDEA
Перейдите на официальный сайт: www.jetbrains.com/idea/download.
Выберите Community Edition (бесплатная версия) для вашей операционной системы:
Windows: .exe.
macOS: .dmg.
Linux: .tar.gz или пакет для дистрибутива.
Нажмите «Download» и сохраните установочный файл.


Шаг 2: Установка IntelliJ IDEA
Для Windows
Запустите скачанный .exe файл.
Следуйте инструкциям мастера установки:
Выберите папку установки (например, C:\Program Files\JetBrains\IntelliJ IDEA Community Edition).
Установите флажки для создания ярлыка на рабочем столе и добавления в PATH (опционально).
Выберите ассоциацию файлов .
java с IntelliJ IDEA.
Нажмите «Install» и дождитесь завершения установки.
Запустите IntelliJ IDEA, выбрав «Run IntelliJ IDEA» в конце установки.


Для macOS
Откройте .dmg файл и перетащите IntelliJ IDEA в папку «Программы» (Applications).
Запустите IntelliJ IDEA из папки «Программы» или через Spotlight.


Для Linux (на примере Ubuntu)
Распакуйте .tar.gz:tar -xzf ideaIC-*.tar.gz -C ~/idea
Перейдите в папку bin и запустите IDE:cd ~/idea/idea-IC-*/bin
./
idea.sh
Следуйте инструкциям установщика (обычно это GUI-мастер).


#Java #для_новичков #beginner #IDEA's
👍4🔥1
Краткая установка и настройка OpenIDE, GigaIDE и Cursor

OpenIDE
Скачивание:
Перейдите на openide.ru или GitFlic для загрузки.
Выберите версию для Windows, macOS или Linux.


Установка:
Windows: Запустите .exe и следуйте мастеру установки.
macOS: Откройте .dmg и перетащите OpenIDE в «Программы». После установки выполните в терминале:xattr -c /Applications/
OpenIDE.app
Linux: Распакуйте .tar.gz и запустите скрипт openide.sh из папки bin.

GigaIDE
Скачивание:
Перейдите на
gitverse.ru/features/gigaide. Требуется авторизация через Сбер ID или cloud.ru.
Выберите GigaIDE Desktop для Windows, macOS или Linux.


Установка:
Windows: Запустите .exe и следуйте инструкциям.
macOS: Откройте .dmg и перетащите GigaIDE в «Программы». Выполните:xattr -c /Applications/GIGA\ IDE\ CE\
2024.1.1.app
Linux: Распакуйте .tar.gz и запустите gigaide.sh из папки bin.

Cursor
Скачивание:
Перейдите на
cursor.com и скачайте версию для Windows, macOS или Linux. Требуется регистрация для доступа к AI-функциям.

Установка:
Windows: Запустите .exe и следуйте инструкциям.
macOS: Перетащите .dmg в «Программы».
Linux: Распакуйте .tar.gz и запустите
cursor.sh.


Полезные советы для новичков


Выбор IDE: Начните с IntelliJ IDEA Community для универсальности. Используйте OpenIDE или GigaIDE для работы в российской инфраструктуре. Cursor подойдет для экспериментов с ИИ, но требует затрат.
Изучите горячие клавиши: Например, в IntelliJ IDEA и OpenIDE/GigaIDE: Ctrl+Alt+L (форматирование кода), Alt+Enter (исправление ошибок).
Практикуйтесь: Создайте простые программы, такие как калькулятор, в каждой IDE, чтобы сравнить их.
Ресурсы:
IntelliJ IDEA:
www.jetbrains.com/idea/documentation.
OpenIDE:
openide.ru.
GigaIDE:
gitverse.ru/features/gigaide.
Cursor:
cursor.com/docs.
Stack Overflow для решения проблем.


#Java #для_новичков #beginner #IDEA's
👍5
Задачи и жизненный цикл в Gradle


Task API: Task, DefaultTask, @TaskAction

Задачи (tasks) — это основная единица работы в Gradle, представляющая такие действия, как компиляция, тестирование или упаковка. Task API предоставляет инструменты для создания и настройки задач.


Основные компоненты

Task:
Интерфейс org.gradle.api.Task, определяющий базовую функциональность задачи (например, выполнение, зависимости).
Все задачи в Gradle реализуют этот интерфейс.


DefaultTask:
Класс org.gradle.api.DefaultTask, стандартная реализация интерфейса Task.
Используется для создания пользовательских задач.


Пример (Groovy DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class CustomTask extends DefaultTask {
@TaskAction
void executeTask() {
println 'Executing custom task'
}
}

tasks.register('customTask', CustomTask)


@TaskAction:
Аннотация, указывающая метод, который выполняется при запуске задачи.

Пример (Kotlin DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

open class CustomTask : DefaultTask() {
@TaskAction
fun executeTask() {
println("Executing custom task")
}
}

tasks.register<CustomTask>("customTask")


В памяти: Каждая задача представлена как объект в JVM, содержащий метаданные (имя, зависимости, действия). Gradle загружает все задачи в память во время фазы конфигурации, что увеличивает потребление памяти пропорционально их количеству. Плагины, такие как java, добавляют множество задач (например, compileJava, test), увеличивая overhead.


Gradle Lifecycle

Жизненный цикл Gradle состоит из трех фаз: Initialization, Configuration и Execution. Каждая фаза выполняет определенные функции и влияет на производительность и память.

Initialization Phase:
Gradle загружает settings.gradle для определения структуры проекта (корневое имя, подмодули).
Создает объекты Project для корневого проекта и подпроектов.
Устанавливает начальные настройки, такие как репозитории и плагины.

В памяти: Минимальная фаза по потреблению ресурсов, так как загружается только settings.gradle и связанные плагины. Объем памяти зависит от количества модулей (обычно 50-100 МБ).


Configuration Phase:

Gradle парсит все файлы build.gradle, создавая модель проекта и граф задач (Directed Acyclic Graph, DAG).
Все скрипты конфигурации выполняются, даже для задач, которые не будут запущены.
Пример: Определение зависимостей, задач и плагинов.

В памяти: Самая ресурсоемкая фаза, так как Gradle загружает и компилирует все скрипты, плагины и зависимости. Для крупных проектов может потребоваться 500-1000 МБ памяти.

Оптимизация: Используйте флаг --configure-on-demand для конфигурации только необходимых модулей:
./gradlew build --configure-on-demand


Execution Phase:
Gradle выполняет задачи, указанные в командной строке (например, ./gradlew build), в порядке, определенном DAG.
Инкрементальность пропускает задачи, чьи входные/выходные данные не изменились (см. ниже).

В памяти: Зависит от сложности задач. Например, compileJava загружает исходные файлы и зависимости, а test — тестовые классы и фреймворки. Параллельное выполнение (--parallel) увеличивает пиковое потребление памяти.


Нюансы:

Конфигурация выполняется всегда, что замедляет сборку, особенно для крупных проектов.
Gradle Daemon сохраняет JVM между сборками, ускоряя повторные запуски, но увеличивая базовое потребление памяти (200-300 МБ).
Используйте --no-daemon для одноразовых сборок:

./gradlew build --no-daemon


#Java #middle #Gradle #Task #Lifecycle
Task Graph, зависимости между задачами

Gradle строит Directed Acyclic Graph (DAG) для задач, где узлы — задачи, а ребра — зависимости. Это определяет порядок выполнения.


Зависимости между задачами

dependsOn:
Указывает, что задача зависит от выполнения других задач.

Пример:
task compileJava {
doLast { println 'Compiling Java' }
}
task test(dependsOn: compileJava) {
doLast { println 'Running tests' }
}

Gradle выполнит compileJava перед test.


mustRunAfter:
Определяет порядок выполнения без строгой зависимости.

Пример:

task taskA {
doLast { println 'Task A' }
}
task taskB {
mustRunAfter 'taskA'
doLast { println 'Task B' }
}

Если обе задачи выполняются, taskB будет после taskA, но taskB может выполняться отдельно.


finalizedBy:
Указывает задачу, которая выполняется после завершения текущей, даже при ошибке.

Пример:
task build {
doLast { println 'Building' }
}
task cleanUp {
doLast { println 'Cleaning up' }
}
build.finalizedBy cleanUp


В памяти: DAG задач хранится как структура данных в JVM, где каждая задача — объект с метаданными (зависимости, действия). Размер графа пропорционален количеству задач, что может увеличить потребление памяти до нескольких сотен МБ в крупных проектах.



Incremental Build и Up-to-Date Checks

Gradle оптимизирует производительность за счет инкрементальной сборки, пропуская задачи, чьи входные/выходные данные не изменились.

Механизм:
Gradle проверяет хэши входных (исходные файлы, свойства) и выходных данных (скомпилированные классы, JAR).
Если хэши совпадают, задача помечается как up-to-date и пропускается.


Пример вывода:
> Task :compileJava UP-TO-DATE


Пример настройки:
tasks.named('compileJava') {
inputs.files('src/main/java')
outputs.dir('build/classes/java/main')
}


В памяти: Gradle хранит хэши входов/выходов в памяти и в ~/.gradle/caches для сравнения. Это добавляет небольшой overhead (около 10-50 МБ), но значительно ускоряет сборку.


Нюансы:

Неправильная настройка входов/выходов может привести к ненужному выполнению задач.
Используйте --info для анализа, почему задача не была пропущена:

./gradlew build --info



Gradle Inputs/Outputs (Task Inputs/Outputs)

Задачи Gradle имеют входы и выходы, которые определяют, что влияет на выполнение задачи и что она производит.

Inputs:
Файлы, свойства или другие данные, от которых зависит задача.

Пример:
task processFiles {
inputs.files fileTree('src/main/resources')
doLast {
println 'Processing files'
}
}


Outputs:
Файлы или директории, создаваемые задачей.

Пример:
task generateReport {
outputs.file file('build/report.txt')
doLast {
file('build/report.txt').text = 'Report content'
}
}


В памяти: Gradle хранит метаданные входов/выходов в памяти и кэширует хэши в ~/.gradle/caches. Для задач с большим количеством файлов (например, compileJava) это увеличивает потребление памяти, так как Gradle сканирует файловую систему.


Нюансы:
Явно указывайте входы/выходы для кастомных задач, чтобы включить инкрементальность.

Используйте inputs.property для не-файловых входов:
task customTask {
inputs.property 'version', project.version
doLast { println "Version: ${project.version}" }
}



#Java #middle #Gradle #Task #Lifecycle
Do-first/do-last и ленивость (Provider, Property)

Gradle поддерживает гибкую настройку задач через doFirst и doLast, а также ленивую конфигурацию через Provider и Property.

doFirst и doLast:
doFirst: Добавляет действие в начало выполнения задачи.
doLast: Добавляет действие в конец выполнения задачи.


Пример:
task example {
doFirst { println 'Starting task' }
doLast { println 'Ending task' }
}


Ленивость (Provider, Property):
Gradle использует ленивую оценку для отсрочки вычислений до фазы выполнения.

Provider: Интерфейс для ленивых значений.def version = providers.provider { project.version }
task printVersion {
doLast {
println "Version: ${version.get()}"
}
}


Property: Для управления свойствами задачи.

task customTask {
def outputFile = objects.property(String)
outputFile.set('build/output.txt')
doLast {
println "Output: ${outputFile.get()}"
}
}


В памяти: doFirst и doLast добавляют действия как объекты в задачу, минимально увеличивая память. Ленивые Provider и Property хранят ссылки на значения, а не сами значения, что оптимизирует память до их вычисления в фазе выполнения.



Gradle Listeners и хуки

Gradle предоставляет хуки для мониторинга и настройки жизненного цикла и задач.

BuildListener:
Устаревший интерфейс для мониторинга событий сборки.

Пример:
gradle.buildFinished {
println 'Build completed'
}



TaskExecutionListener:

Отслеживает выполнение задач.

Пример:
gradle.taskGraph.whenReady {
println 'Task graph is ready'
}


Project.afterEvaluate:
Выполняется после фазы конфигурации.

Пример:
project.afterEvaluate {
println 'Project configured'
}

В памяти: Хуки создают дополнительные объекты-слушатели в памяти, увеличивая overhead. Для крупных проектов с множеством слушателей это может добавить 10-50 МБ памяти.


Нюансы:

Используйте хуки с осторожностью, чтобы избежать замедления сборки.
Для сложной логики создавайте плагины вместо хуков.



Gradle Build Cache

Build Cache позволяет кэшировать результаты задач для повторного использования между сборками или машинами.

Настройка:
buildCache {
local {
enabled = true
}
remote(HttpBuildCache) {
url = 'https://cache.example.com/'
push = true
}
}


Как работает:
Gradle кэширует выходные данные задач (например, скомпилированные классы, JAR) в ~/.gradle/caches/build-cache или на удаленном сервере.
При повторной сборке Gradle проверяет хэши входов/выходов и использует кэшированные результаты, если они совпадают.
Пример: Задача compileJava кэширует классы в build/classes.


Использование:
Включите кэш:
./gradlew build --build-cache


Очистка локального кэша:
rm -rf ~/.gradle/caches/build-cache


В памяти: Build Cache требует хранения хэшей и метаданных в памяти во время выполнения, что добавляет 50-100 МБ overhead. Удаленный кэш увеличивает сетевые операции, но снижает локальные вычисления.


Нюансы:
Настройте входы/выходы задач точно, чтобы кэш работал корректно.
Build Cache наиболее эффективен для CI/CD, где результаты задач переиспользуются между сборками.



#Java #middle #Gradle #Task #Lifecycle