Java for Beginner
744 subscribers
728 photos
207 videos
12 files
1.19K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
Раздел 6. Коллекции в Java

Глава 4. Queue и Deque

Интерфейс Queue. Очередь как структура FIFO. Методы offer, poll, peek


Интерфейс Queue<E> — часть Java Collections Framework (JCF) из пакета java.util, предназначенная для хранения элементов, которые обрабатываются в определенном порядке. Queue моделирует очередь, где элементы добавляются в конец (tail) и извлекаются из начала (head). Основной принцип для большинства реализаций — FIFO, хотя есть исключения, например, приоритетные очереди.

Основные характеристики Queue:
FIFO (First-In-First-Out): Элементы обрабатываются в порядке добавления, как очередь в магазине.
Уникальность: Не гарантируется — дубликаты разрешены (зависит от реализации).
Порядок: Определен структурой (обычно порядок добавления или приоритет).
Big O: Зависит от реализации (O(1) для LinkedList, O(log n) для PriorityQueue).
Null элементы: Зависит от реализации (LinkedList позволяет, PriorityQueue — нет).


Где используется:
Очереди задач (например, обработка запросов в сервере).
Буферы (например, поток ввода-вывода).
Алгоритмы (например, обход графа в ширину — BFS).


Queue<E> расширяет Collection<E>, добавляя методы для работы с очередью.

Основные реализации:
LinkedList (как Queue), ArrayDeque и PriorityQueue.


FIFO: Принцип "первым вошел — первым вышел"

FIFO — это структура данных, где:
Элементы добавляются в конец очереди (enqueue).
Элементы извлекаются из начала (dequeue).
Аналогия: Люди в очереди в кассу — первый в очереди обслуживается первым.


Пример FIFO в жизни: Очередь сообщений в чате обрабатывается в порядке отправки.

Нюанс: PriorityQueue нарушает FIFO, сортируя по приоритету (рассмотрим в следующем уроке).


Основные методы Queue: offer, poll, peek

Queue предоставляет методы для работы с очередью, которые отличаются от add/remove Collection тем, как обрабатывают ограничения (например, заполненность).

offer(E e):

Описание: Добавляет элемент в конец очереди.
Возвращаемое значение: true, если добавлен; false, если очередь полная (для bounded очередей, например, с фиксированным размером).
Исключения: NullPointerException, если null в реализациях, не допускающих null (PriorityQueue).
Big O: O(1) для LinkedList/ArrayDeque, O(log n) для PriorityQueue (перестройка кучи).


poll():

Описание: Извлекает и удаляет элемент из начала очереди.
Возвращаемое значение: Элемент (E) или null, если очередь пуста.
Исключения: Нет (безопаснее, чем remove()).
Big O: O(1) для LinkedList/ArrayDeque, O(log n) для PriorityQueue.


peek():
Описание: Возвращает элемент из начала очереди без удаления.
Возвращаемое значение: Элемент (E) или null, если очередь пуста.
Исключения: Нет.
Big O: O(1) для всех реализаций.


Альтернативы (с исключениями):
add(E e): Как offer, но кидает IllegalStateException при переполнении.
remove(): Как poll, но кидает NoSuchElementException, если пусто.
element(): Как peek, но кидает NoSuchElementException, если пусто.
Нюанс: offer/poll/peek предпочтительнее для очередей, так как безопаснее.



#Java #для_новичков #beginner #Collections #Queue
👍2
Примеры использования методов

LinkedList как Queue (FIFO):
javaimport java.util.LinkedList;
import java.util.Queue;

public class Main {
public static void main(String[] args) {
Queue<String> queue = new LinkedList<>();
// Добавление
queue.offer("Задача 1");
queue.offer("Задача 2");
System.out.println(queue); // [Задача 1, Задача 2]

// Просмотр
System.out.println(queue.peek()); // Задача 1 (без удаления)
System.out.println(queue); // [Задача 1, Задача 2]

// Извлечение
String task = queue.poll(); // Задача 1
System.out.println(task); // Задача 1
System.out.println(queue); // [Задача 2]

// Пустая очередь
queue.poll(); // Задача 2
System.out.println(queue.poll()); // null (без исключения)
}
}

Вывод: Показывает FIFO — элементы извлекаются в порядке добавления, null при пустой очереди.


PriorityQueue (не FIFO, по приоритету):

javaimport java.util.PriorityQueue;
import java.util.Queue;

public class Main {
public static void main(String[] args) {
Queue<Integer> queue = new PriorityQueue<>();
queue.offer(3);
queue.offer(1);
queue.offer(2);
System.out.println(queue); // [1, 3, 2] — минимальный в начале

System.out.println(queue.peek()); // 1
System.out.println(queue.poll()); // 1
System.out.println(queue); // [2, 3]
}
}

Нюанс: PriorityQueue сортирует по натуральному порядку (или Comparator), не FIFO.



Все нюансы методов

offer:

Для bounded очередей (с ограничением размера, например, ArrayBlockingQueue) возвращает false, если полная.
Null: LinkedList позволяет, PriorityQueue — NPE.
Custom объекты: Для PriorityQueue должны быть Comparable или нужен Comparator.


poll:
Безопасно для пустой очереди — просто null.
В PriorityQueue извлекает минимальный элемент (или по Comparator).


peek:
Не меняет очередь — только просмотр.
Null при пустой очереди, безопасно.


Ошибки:
NullPointerException: В PriorityQueue при null.
ClassCastException: В PriorityQueue, если элементы не Comparable.
ConcurrentModificationException: При модификации во время итерации (используйте poll вместо Iterator.remove()).


Thread-safety:
LinkedList, PriorityQueue не thread-safe. Используйте BlockingQueue (например, ArrayBlockingQueue) для многопоточности.
Collections.synchronizedCollection() — простой вариант синхронизации.

Производительность:
LinkedList: O(1) для всех методов (двусвязный список).
PriorityQueue: O(log n) для offer/poll (перестройка кучи), O(1) для peek.
ArrayDeque: O(1) для всех (рассмотрим в следующем уроке).



Полезные советы для новичков

Используйте offer/poll/peek: Безопаснее, чем add/remove/element.
LinkedList как Queue: Универсально для FIFO, но больше памяти, чем ArrayDeque.
Custom классы в PriorityQueue: Реализуйте Comparable или передайте Comparator.
Проверка пустоты: queue.isEmpty() перед poll/peek не нужна — null безопасен.
Итерация: For-each для чтения, но не модифицируйте очередь.



#Java #для_новичков #beginner #Collections #Queue
👍3
Реактивное программирование

Простой REST-контроллер с Mono и Flux в Spring WebFlux

Spring WebFlux работает на Spring Boot — это упрощает запуск.


Создайте новый проект в IDE (IntelliJ, Eclipse) или через spring.io/initializr с зависимостями:
- Spring Reactive Web (для WebFlux).
- Spring Boot Starter WebFlux.


В pom.xml (Maven) это выглядит так:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

Для Gradle: implementation 'org.springframework.boot:spring-boot-starter-webflux'


Запустите приложение с @SpringBootApplication в главном классе. По умолчанию сервер — Reactor Netty (неблокирующий HTTP-сервер), порт 8080. Нет нужды в Tomcat — всё асинхронно. Если у вас уже есть Spring MVC, исключите starter-web, чтобы избежать конфликтов.

Теперь к контроллерам: в WebFlux они аннотированы @RestController (как в MVC), но методы возвращают Mono или Flux. Это значит: контроллер не блокирует поток — он возвращает "реактивный объект", а фреймворк сам подпишется и отправит ответ по мере готовности. Это решает боли блокировок: пока данные готовятся (например, запрос в БД), поток свободен для других запросов.


Mono в контроллере: для одиночных ответов

Mono — это поток для нуля или одного элемента, идеален для типичных REST-операций: GET одного ресурса, POST с созданием, DELETE с подтверждением. В контроллере метод возвращает Mono<T>, где T — ваш DTO или простая строка. Фреймворк автоматически сериализует его в JSON (с Jackson) и отправляет, когда элемент готов.

Простой пример: контроллер для приветствия.
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Mono;

@RestController
public class GreetingController {

@GetMapping("/greet/{name}")
public Mono<String> greet(@PathVariable String name) {
return Mono.just("Привет, " + name + "! Добро пожаловать в реактивный мир.");
}
}

Здесь @GetMapping — аннотация для маршрута, @PathVariable — параметр из URL. Метод возвращает Mono.just — простой синхронный элемент. Но под капотом: WebFlux подпишется на Mono, и когда значение готово (сразу), отправит HTTP 200 с телом. Если бы внутри был асинхронный вызов (например, Mono.delay(Duration.ofSeconds(2)).map(ignore -> "Задержанный привет")), сервер не заблокируется — запрос обработается асинхронно.


Почему Mono лучше Object в MVC? В MVC метод ждёт выполнения (блокирует поток), здесь — нет. Под нагрузкой: тысячи /greet запросов — WebFlux использует event-loop (один поток на все), Reactor распределяет через Schedulers.

Если внутри Mono — запрос к сервису:
@Service
public class UserService {
public Mono<User> findUserById(Long id) {
return Mono.fromCallable(() -> /* симуляция БД */ new User(id, "Имя")); // Асинхронно
}
}


В контроллере:
@GetMapping("/user/{id}")
public Mono<User> getUser(@PathVariable Long id) {
return userService.findUserById(id);
}


Это цепочка: контроллер возвращает Mono от сервиса, фреймворк ждёт готовности без блокировки. Если ошибка в сервисе — onError преобразуется в HTTP 500, но вы можете настроить с @ExceptionHandler.

Расширим: обработка параметров запроса (@RequestParam) и тела (@RequestBody).

Для POST:
@PostMapping("/create-user")
public Mono<User> createUser(@RequestBody Mono<UserRequest> requestMono) {
return requestMono.flatMap(req -> {
// Асинхронная логика: создать пользователя
return userService.createUser(req.getName()).map(saved -> new User(saved.getId(), saved.getName()));
});
}

Здесь @RequestBody — Mono, потому что тело может приходить асинхронно (большие данные). flatMap — для цепочки (из поста 8), чтобы "развернуть" подпоток.



#Java #middle #Reactor #WebFlux #Mono #Flux
👍2
Flux в контроллере: для коллекций и стриминга

Flux — для нуля, одного или многих элементов, подходит для GET списков, пагинации или реального времени (стриминг событий). Возвращайте Flux<T>, и WebFlux отправит ответ как JSON-массив (для конечного) или text/event-stream для SSE (сервер-сент событий).


Простой пример: список элементов.

@GetMapping("/users")
public Flux<User> getAllUsers() {
return Flux.fromIterable(List.of(new User(1L, "Алиса"), new User(2L, "Боб")));
}


Фреймворк соберёт Flux в JSON-массив и отправит одним ответом.

Но если Flux асинхронный:
public Flux<User> findAllUsers() {
return Flux.range(1, 5)
.delayElements(Duration.ofSeconds(1)) // Симуляция задержки
.map(i -> new User((long) i, "Пользователь " + i));
}


Ответ будет стриминговым: клиенту придут данные по мере готовности (chunked transfer).

Для явного SSE добавьте produces = MediaType.TEXT_EVENT_STREAM_VALUE:
@GetMapping(value = "/stream-users", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<User> streamUsers() {
return findAllUsers();
}

Теперь ответ — SSE: каждый элемент как event: data: {"id":1,"name":"Пользователь 1"}\n\n. Клиент (браузер или WebClient) может реагировать на каждый по отдельности, без ожидания всего. Это решает боли callback-ада: вместо polling (опроса сервера), сервер толкает данные (push из поста 3).


Расширим: пагинация с @RequestParam.
@GetMapping("/users-paged")
public Flux<User> getPagedUsers(@RequestParam(defaultValue = "0") int page, @RequestParam(defaultValue = "10") int size) {
return userService.findPaged(page, size); // Сервис возвращает Flux<User>
}


Для POST с Flux телом (batch-операции):
@PostMapping("/batch-users")
public Flux<User> createBatch(@RequestBody Flux<UserRequest> requestsFlux) {
return requestsFlux.flatMap(req -> userService.createUser(req.getName()));
}

flatMap — для параллельной обработки, возвращает Flux сохранённых пользователей.


Обработка ошибок и валидация в контроллерах

Ошибки — часть жизни: в WebFlux используйте @ExceptionHandler в контроллере или глобально (@ControllerAdvice).

Пример:
@ExceptionHandler(UserNotFoundException.class)
public Mono<ResponseEntity<String>> handleNotFound(UserNotFoundException ex) {
return Mono.just(ResponseEntity.notFound().build());
}


Для валидации: @Validated на контроллере, @Valid на @RequestBody. Ошибки валидации — WebExchangeBindException, обработайте в handler.

Глобально:
@ControllerAdvice с @ExceptionHandler для централизованной обработки. Это интегрируется с onErrorResume/retry: в сервисе добавьте, и контроллер получит восстановленный поток.


Практические советы и подводные камни

- Тестирование: Используйте WebTestClient — webTestClient.get().uri("/greet/Name").exchange().expectStatus().isOk().expectBody(String.class).isEqualTo("Привет, Name!");
- Schedulers: Если в сервисе blocking код, добавьте .publishOn(Schedulers.boundedElastic()) перед возвратом в контроллер.
- Проблема: Возврат Flux без produces = TEXT_EVENT_STREAM — соберётся в массив, но под большой нагрузкой рискуете буфером; для стриминга укажите media type.
- Оптимизация: Для больших ответов используйте Flux<DataBuffer> — стриминг байтов без сериализации в память.
- Интеграция: С Spring Security Reactive — фильтры асинхронны, не блокируют.



#Java #middle #Reactor #WebFlux #Mono #Flux
👍1
Раздел 6. Коллекции в Java

Глава 4. Queue и Deque

Реализации: PriorityQueue, LinkedList как очередь. Применение: обработка задач, хранение заявок

Интерфейс Queue<E> имеет несколько реализаций в JCF, каждая оптимизирована под разные сценарии. Сегодня фокус на PriorityQueue и LinkedList (как Queue). Эти реализации демонстрируют разнообразие: от строгого FIFO до приоритетной обработки.

LinkedList<E> как Queue

LinkedList — это двусвязный список (doubly-linked list), который реализует Queue<E> (а также List<E> и Deque<E>). Как очередь, она идеальна для FIFO: добавление в конец, извлечение из начала.

Особенности:
FIFO: Строго соблюдается порядок добавления.
Уникальность: Нет, дубликаты разрешены.
Null: Разрешен (LinkedList позволяет null элементы).
Big O: O(1) для offer (добавление в конец), poll (извлечение из начала), peek (просмотр начала). Contains — O(n), так как перебор списка.


Внутренняя работа: Каждый элемент — узел (node) с ссылками на prev и next. Добавление — создание узла и обновление ссылок. Извлечение — удаление первого узла и сдвиг ссылок.

Нюансы:
Эффективна для частых вставок/удалений в концах (O(1)), но медленная для середины (O(n)).
Память: Выше, чем у ArrayDeque (из-за ссылок на prev/next).
Thread-safety: Нет — для многопоточности используйте BlockingQueue.
Дополнительно: Как Deque, поддерживает добавление/извлечение с обоих концов (об этом в следующем уроке).
Когда использовать: Для простых FIFO-очередей с небольшим размером, или когда нужна универсальность (Queue + List).


Пример кода для LinkedList как Queue:
javaimport java.util.LinkedList;
import java.util.Queue;

public class Main {
public static void main(String[] args) {
Queue<String> queue = new LinkedList<>();
queue.offer("Задача 1"); // Добавление в конец
queue.offer("Задача 2");
queue.offer("Задача 3");
System.out.println(queue); // [Задача 1, Задача 2, Задача 3] — FIFO порядок

System.out.println(queue.peek()); // Задача 1 (просмотр)
System.out.println(queue.poll()); // Задача 1 (извлечение)
System.out.println(queue); // [Задача 2, Задача 3]

queue.offer(null); // Разрешен null
System.out.println(queue.poll()); // Задача 2
}
}

Вывод: Показывает FIFO — элементы извлекаются в порядке добавления, null разрешен.



PriorityQueue<E>

PriorityQueue — это приоритетная очередь на основе кучи (binary heap, min-heap по умолчанию). Она не следует FIFO, а извлекает элементы по приоритету (минимальный первый для натуральных типов).

Особенности:
FIFO: Нет — приоритетный порядок (по Comparable или Comparator).
Уникальность: Нет, дубликаты разрешены.
Null: Не разрешен (NullPointerException).
Big O: O(log n) для offer (вставка в кучу), poll (извлечение минимума с перестройкой), peek — O(1). Contains — O(n), так как перебор.


Внутренняя работа: Хранит элементы в массиве как бинарную кучу. При добавлении/извлечении перестраивает кучу (heapify) для поддержания свойства: родитель <= дети. Приоритет определяется compareTo() или Comparator.

Нюансы:
Порядок итерации: Не гарантирован (куча не sorted list).
Comparator: Передайте при создании: new PriorityQueue<>((a, b) -> b - a) для max-heap.
Размер: Resizable, initial capacity 11.
Thread-safety: Нет — используйте PriorityBlockingQueue для потоков.
Custom объекты: Должны реализовывать Comparable<E> или предоставить Comparator, иначе ClassCastException.
Когда использовать: Для задач с приоритетами (например, планировщик задач, Dijkstra алгоритм).



#Java #для_новичков #beginner #Collections #PriorityQueue #LinkedList
👍1
Пример кода для PriorityQueue:
javaimport java.util.PriorityQueue;
import java.util.Queue;

public class Main {
public static void main(String[] args) {
Queue<Integer> queue = new PriorityQueue<>();
queue.offer(3);
queue.offer(1);
queue.offer(2);
System.out.println(queue); // [1, 3, 2] — min в начале, но итерация не sorted

System.out.println(queue.peek()); // 1 (минимальный)
System.out.println(queue.poll()); // 1
System.out.println(queue); // [2, 3]

// Max-heap с Comparator
Queue<Integer> maxQueue = new PriorityQueue<>((a, b) -> b - a);
maxQueue.offer(3);
maxQueue.offer(1);
maxQueue.offer(2);
System.out.println(maxQueue.poll()); // 3 (максимальный)

// queue.offer(null); // NPE
}
}

Вывод: Элементы извлекаются по приоритету, не по порядку добавления.


Применение очередей: Обработка задач, хранение заявок

Очереди идеальны для сценариев последовательной обработки.

Обработка задач (Task Processing):
Пример: Планировщик задач, где задачи добавляются в очередь и обрабатываются по порядку (FIFO с LinkedList) или по приоритету (PriorityQueue).
Нюанс: В многопоточных системах (например, Thread pool) используйте BlockingQueue для безопасного poll.


Пример кода (простой обработчик):
javaimport java.util.LinkedList;
import java.util.Queue;

public class TaskProcessor {
private Queue<String> tasks = new LinkedList<>();

public void addTask(String task) {
tasks.offer(task);
}

public void processTasks() {
while (!tasks.isEmpty()) {
String task = tasks.poll();
System.out.println("Обработка: " + task);
}
}
}

public class Main {
public static void main(String[] args) {
TaskProcessor processor = new TaskProcessor();
processor.addTask("Задача 1");
processor.addTask("Задача 2");
processor.processTasks(); // Обработка: Задача 1\nОбработка: Задача 2
}
}

Вывод: Задачи обрабатываются FIFO.


Хранение заявок (Request Storage):
Пример: Сервер хранит входящие заявки в очередь для последовательной обработки (например, HTTP requests).
С PriorityQueue: Заявки по срочности (high-priority first).
Нюанс: Для реальных систем используйте BlockingQueue (offer/poll с блокировкой при пустой/полной).


Пример кода (приоритетные заявки):
javaimport java.util.PriorityQueue;
import java.util.Queue;

class Request implements Comparable<Request> {
private String name;
private int priority; // 1 - высокий, 10 - низкий

public Request(String name, int priority) {
this.name = name;
this.priority = priority;
}

@Override
public int compareTo(Request other) {
return Integer.compare(this.priority, other.priority); // Min-heap по приоритету
}

public String getName() {
return name;
}
}

public class Main {
public static void main(String[] args) {
Queue<Request> requests = new PriorityQueue<>();
requests.offer(new Request("Заявка A", 5));
requests.offer(new Request("Заявка B", 1)); // Высокий приоритет
requests.offer(new Request("Заявка C", 3));

while (!requests.isEmpty()) {
System.out.println("Обработка: " + requests.poll().getName()); // Заявка B, Заявка C, Заявка A
}
}
}

Вывод: Заявки обрабатываются по приоритету.


Полезные советы для новичков

LinkedList для простоты: Универсальна для FIFO, легко добавить Deque-функции.
PriorityQueue для приоритетов: Передавайте Comparator для custom порядка (например, max-heap).
Custom классы: Реализуйте Comparable для PriorityQueue, или используйте Comparator.
Пустая очередь: Проверяйте isEmpty() перед poll, или используйте null от poll.
Итерация: For-each для просмотра, но не модифицируйте.



#Java #для_новичков #beginner #Collections #PriorityQueue #LinkedList
👍1
Реактивное программирование

R2DBC vs JDBC: реактивные базы данных


Исторический контекст: что такое JDBC и почему он доминировал десятилетиями

JDBC — это стандартный API Java для доступа к реляционным базам данных, появившийся ещё в JDK 1.1 (1997 год).

Он позволяет выполнять SQL-запросы, управлять соединениями и обрабатывать результаты через унифицированный интерфейс, независимо от конкретной БД (PostgreSQL, MySQL, Oracle и т.д.).


Ключевые компоненты JDBC:
DriverManager или DataSource: Для получения соединения (Connection).
Statement/PreparedStatement: Для выполнения SQL (executeQuery, executeUpdate).
ResultSet: Для чтения результатов (next(), getString() и т.д.).
Transaction management: commit(), rollback().


Пример простого JDBC-кода:
import java.sql.*;
public class JdbcExample {
public static void main(String[] args) {
try (Connection conn = DriverManager.getConnection("jdbc:postgresql://localhost:5432/db", "user", "pass");
PreparedStatement stmt = conn.prepareStatement("SELECT * FROM users WHERE id = ?")) {
stmt.setLong(1, 1L);
ResultSet rs = stmt.executeQuery();

while (rs.next()) {
System.out.println("User: " + rs.getString("name"));
}
} catch (SQLException e) {
e.printStackTrace();
}
}
}


Это синхронно и блокирующе: executeQuery() "виснет" до ответа от БД, блокируя текущий поток.

В традиционных приложениях (как Spring MVC) это работало: каждый запрос — отдельный поток из пула (например, Tomcat с 200 потоками), и если БД отвечает быстро, проблем нет. Но под высокой нагрузкой или с медленными запросами (сетевые задержки, сложные джойны) пул исчерпывается: потоки "спят" в ожидании IO, CPU простаивает, а новые запросы ждут в очереди, вызывая таймауты и отказы. Это классическая проблема асинхронщины: JDBC не предназначен для non-blocking IO, он полагается на blocking calls операционной системы.

В реактивных приложениях (WebFlux) использование JDBC — антипаттерн: если контроллер возвращает Mono, но внутри — blocking JDBC, весь выигрыш теряется. Поток из event-loop (Netty) блокируется, снижая throughput (пропускную способность). Вот почему нужен новый подход.


Проблемы JDBC в реактивном контексте: почему старый стандарт не справляется

Давайте разберём проблемы JDBC подробно, чтобы понять мотивацию R2DBC:
Блокирующая природа: Все операции (connect, query, fetch) — синхронны. В асинхронном коде это требует обёрток вроде CompletableFuture или offload на отдельный пул (Schedulers.boundedElastic()), но это хак: теряется истинная реактивность, и под нагрузкой пулы переполняются.

Отсутствие backpressure: ResultSet — pull-модель (next() получает данные), но без контроля темпа. Если результат огромный (миллионы строк), буфер переполняется, рискуя OOM (OutOfMemoryError). В реактивном мире (push с backpressure) это несовместимо.

Управление соединениями: JDBC полагается на пулы (HikariCP), но они ориентированы на blocking: соединение "занято" весь запрос. В реактиве нужно multiplexing — одно соединение для многих операций асинхронно.

Транзакции:
@Transactional в Spring работает, но в реактиве требует специальной поддержки (reactive transactions), иначе — блокировки.

Масштабируемость: Под 10k+ RPS (requests per second) с БД-запросами JDBC требует огромных пулов потоков (тысячи), что жрёт память (каждый поток ~1MB стека) и контекст-свичинг.

Интеграция с Reactor: Нет native Publisher — результаты не "текут" как Flux, требуя ручной конвертации, что добавляет boilerplate и риски.


В итоге, JDBC — отличный для legacy или низконагруженных приложений, но в микросервисах с WebFlux он "ломает" реактивный стек, возвращая к болям callback-ада и ожиданий.


Введение в R2DBC: реактивный стандарт для реляционных БД

R2DBC — это спецификация (с 2019 года, под эгидой Spring и Pivotal), определяющая API для доступа к реляционным БД в реактивном стиле. Это не замена JDBC, а параллельный стандарт, ориентированный на non-blocking IO.

#Java #middle #Reactor #WebFlux #Mono #Flux #R2DBC
👍1
Ключевые идеи:
Publisher-based API: Все операции возвращают Publisher (Mono/Flux из Reactive Streams): Connection как Mono<Connection>, Statement.execute() как Flux<Row>.

Non-blocking от начала до конца: Использует асинхронные драйверы (для PostgreSQL, MySQL и т.д.), где соединения мультиплексируются — одно для многих запросов.

Backpressure встроено: Результаты (Flux<Row>) уважают request(n): если подписчик не готов, БД не шлёт данные, избегая перегрузки.

Транзакции реактивные: Поддержка
@Transactional с Mono/Flux.

Интеграция с экосистемой: Spring Data R2DBC — аналог Spring Data JPA, с репозиториями,
@Query и CRUD.

Драйверы: r2dbc-postgresql, r2dbc-mysql и т.д. — реализуют спецификацию, используя неблокирующие сокеты (Netty или аналог).

Пример базового R2DBC-кода (без Spring):
import io.r2dbc.spi.ConnectionFactories;
import io.r2dbc.spi.ConnectionFactory;
import reactor.core.publisher.Flux;

public void createConnectionFactory () {

ConnectionFactory factory = ConnectionFactories.get("r2dbc:postgresql://localhost:5432/db?username=user&password=pass");

Flux<String> namesFlux = Flux.usingWhen(

factory.create(), // Асинхронно создать соединение

conn -> conn.createStatement("SELECT name FROM users").execute().flatMap(result -> result.map((row, metadata) -> row.get("name", String.class))),
conn -> conn.close() // Асинхронно закрыть
);

namesFlux.subscribe(System.out::println); // Строки приходят асинхронно
}


Здесь usingWhen — реактивный try-with-resources: создаёт соединение асинхронно, выполняет запрос как Flux<Result>, map извлекает данные. Нет блокировок: если БД медленная, поток свободен.


Spring Data R2DBC: упрощение с репозиториями и аннотациями

Spring Data R2DBC — модуль, который абстрагирует R2DBC, как Spring Data JPA для JDBC.

Добавьте зависимость:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-r2dbc</artifactId>
</dependency>
<dependency>
<groupId>io.r2dbc</groupId>
<artifactId>r2dbc-postgresql</artifactId> <!-- Для PostgreSQL -->
</dependency>


Настройте в application.properties:
spring.r2dbc.url=r2dbc:postgresql://localhost:5432/db
spring.r2dbc.username=user
spring.r2dbc.password=pass


Репозитории:
ReactiveRepository extends ReactiveCrudRepository<Entity, ID>.


Сущность:
@Entity
public class User {
@Id
private Long id;
private String name;
// Getters/setters
}

public interface UserRepository extends ReactiveCrudRepository<User, Long> {
@Query("SELECT * FROM users WHERE name LIKE :name")
Flux<User> findByNameLike(String name);
}


В сервисе/контроллере:
@Service
public class UserService {
private final UserRepository repo;

public UserService(UserRepository repo) {
this.repo = repo;
}

public Flux<User> findAll() {
return repo.findAll(); // Flux асинхронно
}

public Mono<User> save(User user) {
return repo.save(user);
}
}


В контроллере:
@GetMapping("/users")
public Flux<User> getAllUsers() {
return userService.findAll();
}


Это декларативно: repo.findAll() — Flux, который "течёт" из БД без блокировок. Транзакции: @Transactional на методе — reactive, rollback асинхронно.

Расширенный пример: пагинация с ReactiveSortingRepository и Pageable.
public interface UserRepository extends ReactiveSortingRepository<User, Long> {}
Flux<User> paged = repo.findAll(Sort.by("name").ascending()).skip(10).take(20); // Простая пагинация
Для complex: используйте @Query с параметрами, или Criteria API.


Практические советы и подводные камни

Выбор БД: PostgreSQL — лучший для R2DBC (полная поддержка async).
Тестирование: Embedded H2 с r2dbc-h2, ReactiveTest для StepVerifier.
Камень: Нет full ORM (как JPA entities с relations) — используйте ручные joins или Spring Data Projections.
Камень: Транзакции не поддерживают propagation в nested методах fully — будьте осторожны.
Совет: Для hybrid (JDBC + R2DBC) — используйте разные DataSource, но избегайте в одном приложении.
Совет: Мониторьте с Micrometer: метрики на запросы, соединения.



#Java #middle #Reactor #WebFlux #Mono #Flux #R2DBC
👍1
Раздел 6. Коллекции в Java

Глава 4. Queue и Deque

Интерфейс Deque. Двусторонняя очередь (FIFO и LIFO). Реализации: ArrayDeque, LinkedList

Интерфейс Deque<E> — это расширение Queue из пакета java.util, который представляет двустороннюю очередь (double-ended queue). Deque позволяет добавлять, удалять и просматривать элементы как с начала (head), так и с конца (tail) очереди. Это делает Deque универсальной структурой, способной моделировать как обычную очередь (FIFO), так и стек (LIFO), а также комбинированные сценарии.


Ключевые особенности Deque

Двусторонний доступ: Операции с first (начало) и last (конец).

FIFO и LIFO:
FIFO: Добавляйте в конец (addLast), извлекайте из начала (removeFirst) — как стандартная очередь.
LIFO: Добавляйте в начало (addFirst), извлекайте из начала (removeFirst) — как стек.


Уникальность элементов: Не гарантируется — дубликаты разрешены (зависит от реализации).
Null элементы: Зависит от реализации (ArrayDeque позволяет, но не рекомендуется; LinkedList позволяет).
Big O: Зависит от реализации, но обычно O(1) для операций на концах.
Итерация: Поддерживает Iterator для перебора от начала к концу, и descendingIterator() для обратного порядка.

Deque расширяет Queue, добавляя методы для работы с концом. Основные реализации: ArrayDeque (на массиве) и LinkedList (на связном списке). Deque можно использовать как Queue или Stack (вместо устаревшего Stack класса).

Когда использовать Deque:
Для стеков (LIFO, например, undo/redo).
Для очередей с доступом к концу (например, sliding window в алгоритмах).
Для двусторонних операций (например, палиндромы, где проверка с обоих концов).



FIFO и LIFO в Deque: Двусторонняя очередь

Deque поддерживает два основных режима:
FIFO (First-In-First-Out): "Первым вошел — первым вышел".

Добавление: addLast(E e) или offerLast(E e).
Извлечение: removeFirst() или pollFirst().
Просмотр: getFirst() или peekFirst().
Аналогия: Очередь в банке — первый пришел, первый ушел.


LIFO (Last-In-First-Out): "Последним вошел — первым вышел".

Добавление: addFirst(E e) или offerFirst(E e).
Извлечение: removeFirst() или pollFirst().
Просмотр: getFirst() или peekFirst().
Аналогия: Стопка тарелок — последняя сверху первой берется.



Методы Deque (основные, аналогично Queue, но с first/last)

Добавление:
addFirst(E e)/addLast(E e): Добавляет или кидает исключение, если переполнено.
offerFirst(E e)/offerLast(E e): Добавляет, возвращает boolean (false, если переполнено).


Извлечение:
removeFirst()/removeLast(): Извлекает или кидает NoSuchElementException, если пусто.
pollFirst()/pollLast(): Извлекает или возвращает null, если пусто.


Просмотр:
getFirst()/getLast(): Возвращает или кидает NoSuchElementException, если пусто.
peekFirst()/peekLast(): Возвращает или null, если пусто.


Другие: size(), isEmpty(), clear(), iterator(), descendingIterator().
Нюанс: Методы Queue (offer, poll, peek) в Deque эквивалентны offerLast, pollFirst, peekFirst (для FIFO).


#Java #для_новичков #beginner #Collections #Deque #ArrayDeque #LinkedList
👍3
Реализации Deque: ArrayDeque и LinkedList

ArrayDeque

Описание: ArrayDeque — эффективная реализация Deque на основе кругового массива (circular array), который resizable. Она оптимизирована для операций на концах и рекомендуется как стандартная Deque в Java.

Особенности:
FIFO/LIFO: Поддерживает оба.
Уникальность: Нет.
Null: Разрешен.
Big O: O(1) amortized для addFirst/addLast, removeFirst/removeLast, peek (постоянное время). Contains — O(n).


Внутренняя работа: Массив с head и tail индексами. При добавлении/удалении индексы циклически сдвигаются. При заполнении массив удваивается (resizing O(n) rarely).


Нюансы:
Память: Эффективнее LinkedList (нет ссылок на узлы).
Initial capacity: Конструктор с int для начального размера (default 16).
Thread-safety: Нет — используйте для single-thread.
Когда использовать: Для большинства Deque-задач (быстрее LinkedList для концов).
Ограничение: Не реализует List, нет доступа по индексу.


Пример кода для ArrayDeque:

import java.util.ArrayDeque;
import java.util.Deque;

public class Main {
public static void main(String[] args) {
Deque<String> deque = new ArrayDeque<>();
// FIFO: Очередь
deque.offerLast("Элемент 1"); // Добавление в конец
deque.offerLast("Элемент 2");
System.out.println(deque.pollFirst()); // Элемент 1 (извлечение из начала)
System.out.println(deque.peekFirst()); // Элемент 2 (просмотр)

// LIFO: Стек
deque.offerFirst("Элемент 3"); // Добавление в начало
deque.offerFirst("Элемент 4");
System.out.println(deque.pollFirst()); // Элемент 4 (LIFO)

// Обратный итератор
for (String elem : deque.descendingIterator()) {
System.out.println(elem); // С конца к началу
}
}
}

Вывод: Показывает FIFO и LIFO, операции O(1).


LinkedList

Описание: LinkedList — двусвязный список, который реализует Deque (и Queue, List). Как Deque, она позволяет операции на обоих концах.

Особенности:
FIFO/LIFO: Поддерживает оба.
Уникальность: Нет.
Null: Разрешен.
Big O: O(1) для addFirst/addLast, removeFirst/removeLast, peek (ссылки на first/last узлы). Contains — O(n).


Внутренняя работа: Узлы с prev/next ссылками. Добавление — создание узла и обновление ссылок first/last. Удаление — сдвиг ссылок.

Нюансы:
Память: Выше, чем ArrayDeque (каждый узел — объект с ссылками).
Универсальность: Реализует List, так что доступ по индексу (но O(n)).
Thread-safety: Нет.
Когда использовать: Для Deque с дополнительными List-функциями или частых вставок в середину (но для концов ArrayDeque быстрее).
Ограничение: Медленнее ArrayDeque для больших размеров из-за overhead узлов.


Пример кода для LinkedList как Deque (аналогичен ArrayDeque):
import java.util.LinkedList;
import java.util.Deque;

public class Main {
public static void main(String[] args) {
Deque<String> deque = new LinkedList<>();
deque.addLast("Элемент 1");
deque.addLast("Элемент 2");
System.out.println(deque.removeFirst()); // Элемент 1

deque.addFirst("Элемент 3");
System.out.println(deque.removeFirst()); // Элемент 3 (LIFO)
}
}

Вывод: То же, что и ArrayDeque, но с List-возможностями.


Полезные советы для новичков

ArrayDeque по умолчанию: Для большинства Deque-задач — эффективнее.
LinkedList для универсальности: Если нужно List API (get(index)), используйте её.
FIFO vs LIFO: Выбирайте методы (First/Last) по нуждам.
Null: Избегайте, чтобы не путаться.
Итераторы: descendingIterator() для обратного перебора — полезно для LIFO.



#Java #для_новичков #beginner #Collections #Deque #ArrayDeque #LinkedList
👍2
Реактивное программирование

Горячие и холодные Publisher’ы в реактивном программировании

Publisher — это источник данных в Reactive Streams, который "толкает" элементы подписчикам (Subscriber). Но не все Publisher’ы одинаковы по поведению при множественных подписках. Это зависит от того, генерирует ли он данные независимо от подписчиков (горячий) или заново для каждого (холодный).

Холодный Publisher (Cold Publisher): Данные генерируются лениво — только при подписке, и для каждого подписчика отдельно. Это как видео по запросу: каждый зритель получает свою копию потока. Плюс: свежие данные каждый раз. Минус: если источник дорогой (запрос в БД, вычисления), повторяется зря.

Горячий Publisher (Hot Publisher): Данные генерируются независимо от подписчиков — поток "вещает" непрерывно. Подписчики "подключаются" к существующему потоку и получают данные с момента подписки. Это как живой эфир: все слушают одно и то же, но опоздавшие пропускают начало. Плюс: экономия ресурсов (один источник). Минус: данные могут быть "старыми" или пропущенными.


В Project Reactor большинство конструкторов — холодные (just, fromIterable, range), но есть горячие (interval, push). Поведение можно менять операторами (share, cache).


Примеры холодных Publisher’ов: ленивость и независимость

Холодные — default в Reactor: подписка запускает генерацию заново.


Пример с Mono (одиночный элемент, но принцип тот же):
Mono<String> coldMono = Mono.fromCallable(() -> {
System.out.println("Генерация данных...");
return "Данные";
});

coldMono.subscribe(System.out::println); // Вывод: "Генерация данных..." и "Данные"
coldMono.subscribe(System.out::println); // Снова: "Генерация данных..." и "Данные"
Каждый subscribe() вызывает fromCallable заново — данные свежие, но если это запрос в API, будет два вызова.


С Flux:
   Flux<Integer> coldFlux = Flux.range(1, 3).doOnSubscribe(sub -> System.out.println("Новая подписка!"));
coldFlux.subscribe(val -> System.out.println("Подписчик 1: " + val));
coldFlux.subscribe(val -> System.out.println("Подписчик 2: " + val));
// Вывод: "Новая подписка!" + 1,2,3 для первого; "Новая подписка!" + 1,2,3 для второго

Каждый подписчик получает полный поток независимо. Полезно для idempotent операций (без side-effects), как чтение статичных данных.
Асинхронный пример: coldFlux = Flux.interval(Duration.ofSeconds(1)).take(3); // Каждый subscribe() запускает свой таймер.


Примеры горячих Publisher’ов: общий поток и вещание

Горячие — генерируют данные один раз, подписчики "присоединяются".


Пример с Flux.push (горячий по дизайну):
ConnectableFlux<Integer> hotFlux = Flux.push(sink -> {
// Симулируем внешний источник
new Thread(() -> {
for (int i = 1; i <= 3; i++) {
try { Thread.sleep(1000); } catch (InterruptedException e) {}
sink.next(i);
}
sink.complete();
}).start();
});

hotFlux.subscribe(val -> System.out.println("Подписчик 1: " + val));
Thread.sleep(1500); // Ждём, чтобы пропустить начало
hotFlux.subscribe(val -> System.out.println("Подписчик 2: " + val));
hotFlux.connect(); // Запуск горячего

// Вывод примерно: Подписчик 1: 1 (1с), 2 (2с), 3 (3с); Подписчик 2: 2 (присоединился после 1), 3

Второй пропустил 1 — поток общий. Connect() — триггер для ConnectableFlux (обёртка для горячих).


Другой горячий:
Flux.interval(Duration.ofSeconds(1)) — бесконечный таймер, вещает независимо.
Оператор share(): Делает холодный горячим.
Flux<Integer> shared = coldFlux.share();
shared.subscribe(...); // Запускает
shared.subscribe(...); // Присоединяется к существующему



#Java #middle #Reactor #WebFlux #Mono #Flux
👍2
Переключение типов: операторы для контроля

Из холодного в горячий: share() (для Flux), cache() (кэширует элементы для повторов), publish() (ConnectableFlux с backpressure).

Пример cache:
coldMono.cache() — первый subscribe генерирует, последующие — из кэша.
Из горячего в холодный: Редко нужно, но replay() на ConnectableFlux кэширует историю для новых подписчиков.


Сценарии:
Холодный: Запросы к БД (каждый клиент — свежие данные).
Горячий: Мониторинг (один сенсор — всем подписчикам), стриминг событий (Kafka topic).


Практические советы и подводные камни


Диагностика: doOnSubscribe(() -> log("Subscribe")) — увидите, сколько раз запускается.
Камень: Холодный с side-effects (мутации) — непредсказуемо при множественных подписках; используйте defer() для ленивости.
Камень: Горячий бесконечный без take() — утечки; добавьте refCount() на publish() для авто-отписки при 0 подписчиках.
Совет: В WebFlux — Flux из БД (R2DBC, пост 17) холодный по умолчанию; share() для кэширования результатов.
Тестирование: StepVerifier с .publish() для симуляции горячих.



#Java #middle #Reactor #WebFlux #Mono #Flux
👍2