Java for Beginner
743 subscribers
708 photos
196 videos
12 files
1.14K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
Пример нарушения принципа:
public class ShapeCalculator {
public double calculateArea(Object shape) {
if (shape instanceof Circle) {
// Код для круга
return Math.PI * ((Circle) shape).getRadius() * ((Circle) shape).getRadius();
} else if (shape instanceof Square) {
// Код для квадрата
return ((Square) shape).getSide() * ((Square) shape).getSide();
}
// Если добавить треугольник, придется менять метод
return 0;
}
}

Добавление новой фигуры требует изменения метода, что нарушает принцип.


Пример правильного применения:Используем абстракцию и полиморфизм.

public abstract class Shape {
public abstract double calculateArea(); // Метод для расширения
}

public class Circle extends Shape {
private double radius;

public Circle(double radius) {
this.radius = radius;
}

@Override
public double calculateArea() {
return Math.PI * radius * radius;
}
}

public class Square extends Shape {
private double side;

public Square(double side) {
this.side = side;
}

@Override
public double calculateArea() {
return side * side;
}
}

// Для новой фигуры просто добавьте класс, без изменения старого кода

Теперь ShapeCalculator может быть:
public class ShapeCalculator {
public double calculateArea(Shape shape) {
return shape.calculateArea(); // Полиморфизм, закрыт для изменений
}
}

Добавление треугольника — новый класс extends Shape, без изменений в калькуляторе.


Совет: Используйте абстрактные классы или интерфейсы для "открытости", а переопределение — для расширения.



3. Принцип подстановки Лисков (L — Liskov Substitution Principle)

Этот принцип, предложенный Барбарой Лисков, гласит, что объекты подкласса должны быть способны заменять объекты суперкласса без изменения правильности программы. Иными словами, подкласс не должен нарушать ожидания, установленные суперклассом.

Почему важно: Если подкласс меняет поведение суперкласса неожиданным образом, код, использующий суперкласс, может сломаться при подстановке подкласса. Это нарушает полиморфизм.

Подробное объяснение: Подкласс должен сохранять контракты суперкласса: предусловия (входные данные) не ужесточаются, постусловия (выход) не ослабляются, инварианты (постоянные свойства) сохраняются.


Пример нарушения принципа:
Представьте суперкласс Bird (Птица) с методом fly() (летать). Подкласс Penguin (Пингвин) переопределяет fly() и бросает исключение, потому что пингвины не летают. Тогда код Bird bird = new Penguin(); bird.fly(); сломается, хотя ожидалось, что любая птица может летать.
public class Bird {
public void fly() {
System.out.println("Летаю!");
}
}

public class Penguin extends Bird {
@Override
public void fly() {
throw new UnsupportedOperationException("Пингвины не летают!");
}
}

Это нарушение: подстановка пингвина ломает код.


Пример правильного применения:
Лучше разделить: суперкласс Animal, интерфейс Flyable для летающих. Пингвин extends Animal, но не implements Flyable.
public class Animal {
// Общие методы
}

public interface Flyable {
void fly();
}

public class Eagle extends Animal implements Flyable {
@Override
public void fly() {
System.out.println("Орел летает высоко!");
}
}

public class Penguin extends Animal {
// Нет fly(), так что не нарушает
}

Теперь код работает только с Flyable, без неожиданностей.


Совет: Проверяйте: "Можно ли заменить суперкласс подклассом без проблем?" Если нет — пересмотрите дизайн.


#Java #для_новичков #beginner #OOP #SOLID
👍4🔥1
4. Принцип разделения интерфейсов (I — Interface Segregation Principle)

Этот принцип говорит, что интерфейсы должны быть маленькими и специализированными, а не большими и универсальными. Клиенты (классы, использующие интерфейс) не должны зависеть от методов, которые они не используют.

Почему важно: Большой интерфейс заставляет классы реализовывать ненужные методы, что приводит к "пустым" реализациям и усложняет код.

Подробное объяснение: Лучше несколько маленьких интерфейсов, чем один большой. Это делает систему модульной и легче для понимания.


Пример нарушения принципа:
public interface Worker {
void work(); // Для всех
void eat(); // Только для людей
void charge(); // Только для роботов
}

Класс Human реализует charge() бесполезно, Robot — eat().


Пример правильного применения:

Разделите на маленькие интерфейсы.
public interface Workable {
void work();
}

public interface Eatable {
void eat();
}

public interface Chargeable {
void charge();
}

public class Human implements Workable, Eatable {
@Override
public void work() { /*...*/ }

@Override
public void eat() { /*...*/ }
}

public class Robot implements Workable, Chargeable {
@Override
public void work() { /*...*/ }

@Override
public void charge() { /*...*/ }
}

Теперь классы реализуют только нужное.


Совет: Интерфейс должен быть "толстым" для клиента, но "тонким" для реализатора — маленькие интерфейсы.


5. Принцип инверсии зависимостей (D — Dependency Inversion Principle)


Этот принцип утверждает, что высокоуровневые модули (бизнес-логика) не должны зависеть от низкоуровневых (детали реализации), а оба должны зависеть от абстракций (интерфейсов). Абстракции не зависят от деталей, детали зависят от абстракций.

Почему важно: Это уменьшает связь между частями системы, делая код легче для изменения и тестирования (например, замена базы данных без изменения бизнес-логики).

Подробное объяснение: Используйте интерфейсы или абстрактные классы как "прослойку". Высокий уровень зависит от интерфейса, низкий — реализует его.


Пример нарушения принципа:
public class ReportService {
private MySQLDatabase db = new MySQLDatabase(); // Зависит от конкретной реализации

public void generateReport() {
db.connect();
// ...
}
}

Смена базы данных требует изменения сервиса.


Пример правильного применения:
public interface Database {
void connect();
// ...
}

public class MySQLDatabase implements Database {
@Override
public void connect() { /*...*/ }
}

public class ReportService {
private Database db; // Зависит от абстракции

public ReportService(Database db) { // Инъекция зависимости
this.db = db;
}

public void generateReport() {
db.connect();
// ...
}
}

Теперь можно передать любую реализацию: new ReportService(new MySQLDatabase()) или new ReportService(new PostgreSQLDatabase()).


Совет: Используйте dependency injection (внедрение зависимостей) для передачи абстракций.


Полезные советы для новичков

Применяйте SOLID постепенно: Начните с единственной ответственности, потом добавляйте другие.
Примеры в Java: Смотрите стандартную библиотеку — она следует SOLID.
Ресурсы: Книга "Clean Code" Роберта Мартина для глубокого понимания.
Практика: Возьмите свой код и проверьте на соответствие каждому принципу.



#Java #для_новичков #beginner #OOP #SOLID
👍3🔥21
Основы ООП в Java

Глава 7. Принципы проектирования и хорошего кода

DRY, KISS, YAGNI

DRY: Не повторяйся

DRY (Don't Repeat Yourself — Не повторяйся) — это принцип, который требует избегать дублирования кода, логики или данных в программе. Если один и тот же фрагмент повторяется в нескольких местах, его нужно вынести в общий элемент, чтобы изменения в одном месте автоматически отражались везде.

Почему важно: Дублирование приводит к ошибкам — если нужно исправить логику, вы рискуете забыть обновить все копии. Это усложняет поддержку кода и увеличивает его объем.
Как применять в Java: Выносите общую логику в методы, классы или утилиты. Используйте наследование, композицию или библиотеки.


Пример нарушения DRY:
Два метода в классе Calculator, которые дублируют расчет площади:
public class Calculator {
// Нарушение: Дублирование
public double circleArea(double radius) {
return 3.14159 * radius * radius;
}

public double circleVolume(double radius, double height) {
return 3.14159 * radius * radius * height; // Тот же расчет площади
}
}


Исправление: Выносите общую часть в метод:
public class Calculator {
// Правильно: Общий метод
private double calculateCircleBase(double radius) {
final double PI = 3.14159;
return PI * radius * radius;
}

public double circleArea(double radius) {
return calculateCircleBase(radius);
}

public double circleVolume(double radius, double height) {
return calculateCircleBase(radius) * height;
}
}


Нюансы:
Не путайте с WET (We Enjoy Typing — Мы любим печатать) — саркастический термин для дублирующего кода.
В ООП: Используйте абстрактные классы или интерфейсы для общих шаблонов.
В Java: Константы в enum или static final для общих значений.
Ловушка: Избыточная абстракция — не выносите, если код используется редко (связано с YAGNI).



KISS: Делай просто

KISS (Keep It Simple, Stupid — Делай просто, глупец) — принцип, который призывает к простоте в дизайне кода, алгоритмах и архитектуре. Вместо сложных конструкций выбирайте простые решения, которые легко понять и поддерживать.

Почему важно: Сложный код трудно отлаживать, тестировать и расширять. Простота снижает ошибки и ускоряет разработку.
Как применять в Java: Избегайте ненужных абстракций, используйте встроенные средства языка, пишите короткие методы.


Пример нарушения KISS:
Сложный расчет с лишними классами:
// Нарушение: Избыточная сложность
public class ComplexCalculator {
public double calculate(double a, double b) {
AdvancedMathUtils utils = new AdvancedMathUtils();
return utils.performAdvancedOps(new OperationContext(a, b)).getResult();
}
}

// Куча лишних классов...
Исправление: Простой метод:
javapublic class SimpleCalculator {
public double calculate(double a, double b) {
return Math.sqrt(a * a + b * b); // Прямо и ясно
}
}


Нюансы:
"Глупец" в аббревиатуре — напоминание, что простота побеждает "умные" хаки.
В ООП: Предпочитайте композицию над глубоким наследованием.
В Java: Используйте Stream API для простых операций, но не для всего.
Ловушка: Простота не значит примитивность — балансируйте с читаемостью.



#Java #для_новичков #beginner #OOP #DRY #KISS #YAGNI
👍3
YAGNI: Тебе это не понадобится

YAGNI (You Ain't Gonna Need It — Тебе это не понадобится) — принцип, который предупреждает против добавления функциональности заранее, на основе предположений о будущем. Реализуйте только то, что нужно сейчас, чтобы избежать переусложнения.

Почему важно: Предвидение будущего часто ошибочно, и лишний код увеличивает сложность, баги и время на поддержку.
Как применять в Java: Добавляйте код по мере необходимости, используйте рефакторинг для расширений.


Пример нарушения YAGNI:

Класс с "будущими" методами:
// Нарушение: Лишние методы "на всякий случай"
public class User {
private String name;

public User(String name) {
this.name = name;
}

public void sendEmail() { /* Пока пусто */ }
public void sendSMS() { /* Пока пусто */ }
public void integrateWithAPI() { /* Пока пусто */ }
}
Исправление: Только необходимое:
javapublic class User {
private String name;

public User(String name) {
this.name = name;
}

// Только базовая функциональность
public String getName() {
return name;
}
}


Нюансы:
Связано с принципом "You Are Not Gonna Need It" — фокус на MVP (минимально жизнеспособном продукте).
В ООП: Не создавайте абстрактные классы "на будущее" — реализуйте, когда нужно.
В Java: Избегайте over-engineering в дизайне (например, Factory для простых объектов).
Ловушка: YAGNI не значит игнорировать планирование — используйте TDD (тест-драйвен разработку) для роста.



Полезные советы для новичков

DRY: Ищите дубли — рефакторьте в методы или утилиты.
KISS: Читайте код через день — если не понятно, упростите.
YAGNI: Задавайте: "Нужно ли это прямо сейчас?"
В Java: Используйте IDE для рефакторинга (Extract Method для DRY).
Ресурсы: Книга "Чистый код" Роберта Мартина — классика по этим принципам.



#Java #для_новичков #beginner #OOP #DRY #KISS #YAGNI
👍4🔥1
Основы ООП в Java

Глава 7. Принципы проектирования и хорошего кода

Композиция vs Наследование

В объектно-ориентированном программировании композиция и наследование — это два способа организации кода для повторного использования и связи между классами. Они решают разные задачи и подходят для разных ситуаций.

Наследование:
Механизм, при котором класс (подкласс) наследует поля, методы и поведение от другого класса (суперкласса) с помощью ключевого слова extends. Это воплощает отношение "является" (is-a). Например, Dog является Animal.

Композиция:
Механизм, при котором класс содержит объекты других классов как поля, используя их функциональность. Это воплощает отношение "имеет" (has-a). Например, Car имеет Engine.

Оба подхода позволяют повторно использовать код, но их применение влияет на гибкость, читаемость и масштабируемость программы.



Наследование: Когда использовать и проблемы

Наследование удобно, когда классы имеют четкое отношение "является", и подкласс естественным образом расширяет поведение суперкласса.

Пример наследования:
public class Animal {
protected String name;

public Animal(String name) {
this.name = name;
}

public void makeSound() {
System.out.println(name + " издает звук.");
}
}

public class Dog extends Animal {
public Dog(String name) {
super(name);
}

@Override
public void makeSound() {
System.out.println(name + " лает: Гав!");
}
}


Когда использовать:
Есть четкое is-a отношение: Dog — это Animal.
Нужно переопределить или расширить поведение (через override).
Полиморфизм: Работа с подклассами через ссылку на суперкласс (Animal[] animals).


Преимущества:
Простота: Код автоматически наследуется.
Полиморфизм: Легко реализовать через override.
Иерархия: Удобно для моделирования реальных сущностей (например, Животное → Млекопитающее → Собака).


Недостатки:
Жесткая связь: Подкласс привязан к суперклассу — изменения в суперклассе могут сломать подклассы.
Хрупкий базовый класс: Изменение метода в суперклассе может неожиданно повлиять на подклассы.
Ограничение Java: Только одиночное наследование (один extends).
Сложность в глубоких иерархиях: Много уровней наследования трудно поддерживать.
Нарушение инкапсуляции: Подклассы могут зависеть от внутренней реализации.

Пример проблемы: Если добавить метод в Animal, который не подходит для всех подклассов (например, fly()), подклассы вроде Dog окажутся в неудобном положении.


Композиция: Когда использовать и преимущества

Композиция — это включение объектов других классов как полей, чтобы использовать их функциональность. Это отношения, где класс владеет компонентами.


Пример композиции:
public class Engine {
private int horsepower;

public Engine(int horsepower) {
this.horsepower = horsepower;
}

public void start() {
System.out.println("Двигатель с " + horsepower + " л.с. запущен.");
}
}

public class Car {
private String model;
private Engine engine; // Композиция: Car "имеет" Engine

public Car(String model, Engine engine) {
this.model = model;
this.engine = engine;
}

public void drive() {
engine.start();
System.out.println(model + " едет.");
}
}


Использование:
public class Main {
public static void main(String[] args) {
Engine engine = new Engine(200);
Car car = new Car("Toyota", engine);
car.drive(); // Двигатель с 200 л.с. запущен. Toyota едет.
}
}


Когда использовать:
Отношения: Car имеет Engine, а не является им.
Нужно гибкое сочетание функциональности без жесткой связи.
Требуется заменяемость компонентов (например, разные двигатели).


Преимущества:
Гибкость: Легко заменить компонент (например, Engine на ElectricEngine).
Слабая связь: Изменения в Engine не ломают Car, если интерфейс сохранен.
Инкапсуляция: Car скрывает детали Engine, управляя доступом.
Модульность: Компоненты можно использовать в других классах.
Тестирование: Легче подменять компоненты (mocking) для тестов.


#Java #для_новичков #beginner #OOP #Composition #Extends
👍4
Недостатки:
Больше кода: Нужно явно создавать и передавать компоненты.
Сложнее полиморфизм: Требуются интерфейсы для единообразия.



Композиция vs Наследование: Как выбирать

Выбирайте композицию, если:
Нет четкого is-a отношения, а скорее has-a.
Нужна гибкость: Компоненты могут меняться (например, разные реализации Engine).
Хотите избежать жесткой связи или хрупкого базового класса.
Нужно реализовать поведение, которое не должно быть частью иерархии.

Выбирайте наследование, если:
Есть четкое is-a отношение, и подкласс логично расширяет суперкласс.
Нужен полиморфизм через ссылки на суперкласс.
Иерархия простая (1-2 уровня).


Пример: Композиция вместо наследования:

Наследование (проблема):
public class Vehicle {
public void move() {
System.out.println("Движется с помощью двигателя.");
}
}

public class Car extends Vehicle {
// Проблема: А если электромобиль или велосипед?
}

Композиция (решение):
public interface Movable {
void move();
}

public class EngineMovable implements Movable {
@Override
public void move() {
System.out.println("Движется с помощью двигателя.");
}
}

public class Car {
private Movable movement;

public Car(Movable movement) {
this.movement = movement;
}

public void drive() {
movement.move();
}
}

Теперь Car может использовать любой Movable (двигатель, электромотор), без привязки к иерархии.


Все нюансы

Наследование:
Жесткая связь: Подкласс зависит от реализации суперкласса.
Проблема ромба: В Java избежана (одиночное наследование), но множественное через интерфейсы.
Нюанс: Переопределение может нарушить контракт (Liskov Substitution Principle).


Композиция:
Требует интерфейсов для полиморфизма (например, Movable).
Нюанс: Больше кода для передачи компонентов (конструктор, сеттеры).
Делегирование: Car вызывает методы Engine — это нормально.


Когда комбинировать:
Используйте наследование для базовой структуры, композицию для поведения.
Пример: extends AbstractVehicle, но Engine как поле.


Ошибки:
Наследование вместо композиции: Глубокие иерархии или неподходящие is-a.
Композиция без интерфейсов: Теряется полиморфизм.


Дизайн:
Композиция соответствует принципу KISS (меньше связей).
Наследование — YAGNI: Не создавайте иерархии "на будущее".
DRY: Оба подхода помогают повторно использовать код.


Java-специфика:
Интерфейсы + default методы часто заменяют наследование.
Dependency Injection (Spring) — пример композиции.



Как создать это в IntelliJ IDEA

Композиция: Создайте интерфейс (New → Interface), класс с полем и методами.
Наследование: New → Class, укажите extends, IDE поможет override.
Рефакторинг: Extract Interface для перехода от наследования к композиции.



Полезные советы для новичков

Композиция по умолчанию: Если сомневаетесь, начните с has-a.
Проверяйте is-a: Dog is-an Animal? Да. Car is-an Engine? Нет.
Интерфейсы для гибкости: Комбинируйте композицию с интерфейсами.
Избегайте глубоких иерархий: Не больше 2-3 уровней.



#Java #для_новичков #beginner #OOP #Composition #Extends
👍4
Коллекции в Java

Глава 1. Введение в коллекции

Обзор Java Collections Framework. Интерфейсы Collection и Map. Иерархия коллекций. Отличия коллекций от массивов

Java Collections Framework (JCF) — это набор интерфейсов, классов и алгоритмов в пакете java.util, предназначенный для работы с коллекциями данных. JCF предоставляет унифицированный способ хранения и манипуляции объектами, делая код более гибким и эффективным.

- Компоненты JCF:
- Интерфейсы: Определяют контракт (что можно делать с коллекцией).
- Реализации: Конкретные классы, реализующие интерфейсы (например, ArrayList для List).
- Алгоритмы: Встроенные методы для сортировки, поиска и т.д. (в классе Collections).


JCF введен в Java 1.2 и значительно улучшен в Java 5 с generics (обобщениями), которые обеспечивают типобезопасность.

- Преимущества JCF:
- Гибкость: Динамический размер, в отличие от массивов.
- Типобезопасность: С generics — компилятор проверяет типы.
- Эффективность: Разные реализации для разных сценариев (быстрый доступ, уникальность элементов и т.д.).
- Полиморфизм: Работа через интерфейсы, легко менять реализации.



Интерфейсы Collection и Map

JCF построен вокруг двух основных интерфейсов: Collection для последовательностей объектов и Map для пар ключ-значение.

1. Интерфейс Collection<E>:
- Это базовый интерфейс для коллекций, где E — тип элементов (generics).
- Представляет группу объектов, позволяя добавлять, удалять, перебирать.
- Не гарантирует порядок или уникальность — зависит от реализации.


- Основные методы:
- add(E e): Добавляет элемент.
- remove(Object o): Удаляет элемент.
- size(): Возвращает размер.
- isEmpty(): Проверяет пустоту.
- iterator(): Для перебора (Iterator).
- contains(Object o): Проверяет наличие.


- Нюанс: Collection не индексирован (нет get(int index)), для этого — подинтерфейсы как List.

2. Интерфейс Map<K, V>:
- Представляет отображение: пары ключ-значение, где K — тип ключа, V — тип значения.
- Ключи уникальны, значения могут дублироваться.
- Не является подтипом Collection (Map не коллекция элементов, а ассоциация).


- Основные методы:
- put(K key, V value): Добавляет/обновляет пару.
- get(Object key): Возвращает значение по ключу.
- remove(Object key): Удаляет по ключу.
- size(), isEmpty().
- keySet(): Коллекция ключей (Set<K>).
- values(): Коллекция значений (Collection<V>).
- entrySet(): Коллекция пар (Set<Map.Entry<K, V>>).


- Нюанс: Map не упорядочен (кроме SortedMap), ключи не null (в большинстве реализаций).


#Java #для_новичков #beginner #Collections #Map
👍3
Иерархия коллекций в JCF

JCF имеет иерархию интерфейсов и реализаций. Вот подробная структура:

1. Иерархия Collection:

- Collection<E> (базовый):
- List<E>: Упорядоченная коллекция, позволяет дубликаты, индексация.
- Реализации: ArrayList (быстрый доступ), LinkedList (быстрые вставки/удаления), Vector (устаревший, synchronized).
- Set<E>: Неупорядоченная коллекция уникальных элементов.
- Реализации: HashSet (быстрый поиск), TreeSet (отсортированный), LinkedHashSet (сохраняет порядок вставки).
- Queue<E>: Для очередей (FIFO), или приоритетных.
- Реализации: LinkedList (как Queue), PriorityQueue (приоритетная), ArrayDeque (deque).
- Deque<E>: Двусторонняя очередь (добавление/удаление с обоих концов).
- Реализации: ArrayDeque, LinkedList.


2. Иерархия Map:

- Map<K, V> (базовый):
- HashMap<K, V>: Быстрый поиск по хэшу, не упорядочен.
- TreeMap<K, V>: Отсортированный по ключам (SortedMap).
- LinkedHashMap<K, V>: Сохраняет порядок вставки.
- Hashtable<K, V>: Устаревший, synchronized.


- Generics: С Java 5: Collection<String> list = new ArrayList<>(); — типобезопасно.

- Нюансы иерархии:
- Все реализации — concrete классы, кроме абстрактных helper-классов (AbstractList).
- Synchronized: Для многопоточности используйте Collections.synchronized*() или Concurrent* классы (ConcurrentHashMap).
- Performance: Выбирайте по нуждам — HashSet O(1) поиск, TreeSet O(log n) с сортировкой.
- Immutability: Collections.unmodifiable*() для read-only коллекций.



Отличия коллекций от массивов

Массивы — базовый тип в Java для хранения элементов фиксированного размера. Коллекции — более гибкий инструмент из JCF.

- Подробное сравнение:
1. Размер:
- Массивы: Фиксированный (int[] arr = new int[10]; — нельзя изменить).
- Коллекции: Динамический (ArrayList.add() расширяет автоматически).


2. Типы элементов:
- Массивы: Могут хранить примитивы (int[]) или объекты.
- Коллекции: Только объекты (Collection<Integer> для примитивов через wrapper).


3. Методы:
- Массивы: Ограничены (длина .length, доступ по индексу).
- Коллекции: Богатый API (add, remove, contains, sort, iterator).


4. Generics:
- Массивы: Нет (Object[] может хранить всё, но без проверки).
- Коллекции: С generics — типобезопасно (компилятор проверяет).


5. Performance:
- Массивы: Быстрее для фиксированного размера и примитивов.
- Коллекции: Overhead, но удобнее; ArrayList близок к массиву.


6. Многомерность:
- Массивы: Легко (int[][]).
- Коллекции: Вложенные (List<List<Integer>>).


7. Null и дубликаты:
- Оба позволяют, но Set в коллекциях запрещает дубликаты.

Пример перехода от массива к коллекции:

Массив:
String[] names = new String[3];
names[0] = "Алексей";
// Нет add, нужно вручную управлять размером


Коллекция:
List<String> names = new ArrayList<>();
names.add("Алексей"); // Динамично
names.remove(0); // Легко удалить

- Нюанс: Коллекции используют массивы внутри (ArrayList — resizable array).


Как работать с JCF в IntelliJ IDEA

1. Импорт: Импортируйте java.util.* или конкретно (IDE подскажет Ctrl+Space).
2. Generics: Напишите List<String> — IDE проверит типы.
3. Коллекции: New → Collection → Выберите реализацию.
4. Методы: Автодополнение для add, remove и т.д.
5. Debug: В отладке смотрите содержимое коллекций.



Полезные советы для новичков

- Выбирайте интерфейс: Кодьте под List, а не ArrayList — легко сменить реализацию.
- Generics всегда: Избегайте raw types (List без <E> — устарело).
- Коллекции vs массивы: Массивы для фиксированных примитивов, коллекции для всего остального.
- Performance: ArrayList для доступа, LinkedList для вставок, HashSet для уникальности.



#Java #для_новичков #beginner #Collections #Map
👍3
Коллекции в Java

Глава 1. Введение в коллекции

Основные характеристики коллекций: время доступа (Big O), хранение уникальных элементов, упорядоченность и сортировка

Big O (или O-нотация) — это математическая нотация, которая описывает, как растет время выполнения операции (или использование памяти) в зависимости от размера данных (n — количество элементов). Она оценивает "наихудший случай" и помогает сравнивать эффективность коллекций.

Основные обозначения Big O:
- O(1): Постоянное время — операция не зависит от размера (например, доступ по индексу в массиве).
- O(log n): Логарифмическое время — быстро растет, но эффективно (например, поиск в отсортированном дереве).
- O(n): Линейное время — пропорционально размеру (например, перебор списка).
- O(n log n): Для сортировки (например, TreeSet).
- O(n²): Квадратичное — медленно для больших n (избегайте).


Для коллекций Big O применяется к основным операциям: добавление (add), удаление (remove), поиск (contains/get), вставка.

Почему важно: Выбор коллекции влияет на производительность. Для миллионов элементов O(1) лучше O(n).


Хранение уникальных элементов

Коллекции различаются по тому, позволяют ли они дубликаты элементов.


Коллекции с уникальными элементами:
- Интерфейс Set<E>: Не позволяет дубликаты. Если добавить существующий элемент, он игнорируется (add() возвращает false).
- Пример: HashSet, TreeSet, LinkedHashSet.
- Нюанс: Уникальность определяется методом equals() и hashCode() (для HashSet). Переопределите их для custom классов.


Коллекции с дубликатами:
- Интерфейс List<E>: Позволяет дубликаты и хранит их в порядке вставки.
- Пример: ArrayList, LinkedList.
- Queue<E> и Deque<E>: Могут позволять дубликаты, в зависимости от реализации.


- Map<K, V>: Ключи уникальны (как Set), значения могут дублироваться.

Пример кода для уникальности:
import java.util.HashSet;
import java.util.Set;
import java.util.ArrayList;
import java.util.List;

public class Main {
public static void main(String[] args) {
// Set: Уникальные элементы
Set<String> uniqueNames = new HashSet<>();
uniqueNames.add("Алексей");
uniqueNames.add("Алексей"); // Игнорируется
System.out.println(uniqueNames.size()); // 1

// List: Дубликаты разрешены
List<String> names = new ArrayList<>();
names.add("Алексей");
names.add("Алексей");
System.out.println(names.size()); // 2
}
}


- Нюанс: Для custom объектов в Set переопределите equals() и hashCode(), иначе дубликаты возможны (сравнение по ссылке).


#Java #для_новичков #beginner #Collections #BigO
👍3
Упорядоченность элементов

Упорядоченность — это сохранение порядка элементов (по вставке или сортировке).

Коллекции с порядком вставки:
- List<E>: Всегда упорядочены по индексу (порядок добавления).
- Пример: ArrayList, LinkedList.
- LinkedHashSet<E>: Set с порядком вставки.
- LinkedHashMap<K, V>: Map с порядком вставки.

Коллекции без порядка:
- HashSet<E>: Не гарантирует порядок (зависит от хэша).
- HashMap<K, V>: Не упорядочен.


Отсортированные коллекции: Подробнее в разделе о сортировке.

Пример:
import java.util.HashSet;
import java.util.LinkedHashSet;

public class Main {
public static void main(String[] args) {
// HashSet: Без порядка
Set<String> hashSet = new HashSet<>();
hashSet.add("Яблоко");
hashSet.add("Банан");
hashSet.add("Апельсин");
System.out.println(hashSet); // Может быть [Банан, Яблоко, Апельсин] — непредсказуемо

// LinkedHashSet: Порядок вставки
Set<String> linkedSet = new LinkedHashSet<>();
linkedSet.add("Яблоко");
linkedSet.add("Банан");
linkedSet.add("Апельсин");
System.out.println(linkedSet); // [Яблоко, Банан, Апельсин] — сохраняет порядок
}
}


- Нюанс: Порядок в HashSet может меняться при ресайзе (rehashing), так что не полагайтесь на него.


Сортировка элементов

Сортировка — это автоматическое упорядочивание элементов по какому-то критерию (натуральный порядок или Comparator).

Отсортированные коллекции:
- SortedSet<E> (подинтерфейс Set): Уникальные, отсортированные элементы.
- Реализация: TreeSet<E> — использует красно-черное дерево.
- SortedMap<K, V> (подинтерфейс Map): Отсортированные ключи.
- Реализация: TreeMap<K, V>.


Как работает сортировка:
- Элементы должны быть Comparable<E> (метод compareTo()) для натурального порядка (числа по возрастанию, строки по алфавиту).
- Или используйте Comparator при создании: new TreeSet<>(comparator).
- Нюанс: Добавление/поиск — O(log n), так как дерево балансировано.


Пример TreeSet:
import java.util.TreeSet;
import java.util.Set;

public class Main {
public static void main(String[] args) {
Set<Integer> numbers = new TreeSet<>();
numbers.add(5);
numbers.add(1);
numbers.add(3);
System.out.println(numbers); // [1, 3, 5] — отсортировано

// Custom Comparator для обратного порядка
Set<Integer> reverseNumbers = new TreeSet<>((a, b) -> b - a);
reverseNumbers.add(5);
reverseNumbers.add(1);
reverseNumbers.add(3);
System.out.println(reverseNumbers); // [5, 3, 1]
}
}


- Нюанс: TreeSet не позволяет null (NullPointerException), так как сравнивает элементы.
Для сортировки существующих коллекций используйте Collections.sort(List list) или List.sort(Comparator).



Полезные советы для новичков

- Big O в практике: Для малого n (сотни элементов) разница мала, но для миллионов — критична (выберите HashSet для быстрого contains).
- Уникальность: Set для словарей, List для списков с повторами.
- Упорядоченность: Linked* для сохранения вставки, Tree* для автосортировки.
- Сортировка: TreeSet/Map для постоянной сортировки; Collections.sort() для разовой.
- Ошибки: Null в TreeSet — NPE; дубли в Set — игнор.
- Ресурсы: Java API docs для java.util.



#Java #для_новичков #beginner #Collections #BigO
👍3
Раздел 6. Коллекции в Java

Глава 1. Введение в коллекции

(Практика):
Начать проект «Библиотека».
Создать класс Book с полями title, author, year.
Сделать список книг (пока как массив) и вывести их на экран


Перед тем, как писать код, важно правильно настроить среду разработки. Это обеспечит удобную работу и избежание ошибок на старте.

Запустите IntelliJ IDEA:
Если IDE не открыта, запустите её. Убедитесь, что у вас установлен JDK. Если проект новый, выберите "New Project" на приветственном экране.

Создайте новый проект:
В окне создания проекта выберите "Java" как тип.
Укажите имя проекта, например, "LibraryProject".
Выберите JDK в поле Project SDK (если не настроено, добавьте путь к JDK).
Оставьте остальные настройки по умолчанию (без Maven или Gradle для простоты) и нажмите "Create".
IDE создаст структуру проекта с папкой src для исходного кода.

Настройте структуру проекта:
В дереве проекта (слева) найдите src.
Если нужно, создайте пакет для организации кода: Правой кнопкой на src → New → Package → Назовите "library" (или другое имя). Это хорошая практика для группировки классов.

Создание класса Book
Теперь создадим основной класс для представления книги. Это будет простой класс с полями, который позже расширим.

Создайте класс Book:
В пакете (или прямо в src, если без пакета) щелкните правой кнопкой → New → Java Class.
Назовите класс "Book".
IDE создаст файл
Book.java с базовой структурой

public class Book {}


Добавьте поля:
В теле класса объявите три приватных поля:
title типа String (для названия книги).
author типа String (для автора).
year типа int (для года издания).


Используйте модификатор private для инкапсуляции, как мы изучали в ООП.


Добавьте конструктор:
Создайте публичный конструктор, который принимает три параметра (String title, String author, int year) и присваивает их соответствующим полям с помощью this.
Это позволит создавать объекты Book с начальными значениями.

Добавьте метод для вывода:
Создайте публичный метод, например, printDetails(), который выводит информацию о книге на экран с помощью System.out.println.
В нём используйте поля для формирования строки вроде "Название: [title], Автор: [author], Год: [year]".



Создание списка книг с использованием массива


Пока мы используем массив как простую структуру для хранения списка книг — это поможет сравнить с коллекциями позже.

Создайте класс Main:
Аналогично создайте новый класс "Main" в том же пакете.
Добавьте статический метод main(String[] args) — точку входа.


Объявите массив:
В методе main объявите массив объектов Book фиксированного размера, например, Book[] books = new Book[3]; (размер выберите небольшой для теста).

Инициализируйте массив:
Создайте несколько объектов Book с помощью new Book(title, author, year) и присвойте их элементам массива (books[0] = new Book(...); и т.д.).
Используйте разные значения для демонстрации (например, книги разных авторов и годов).


Выведите список на экран:
Используйте цикл for (или for-each: for (Book book : books)) для перебора массива.
В цикле вызовите метод printDetails() для каждого элемента, чтобы вывести информацию о книгах.


#Java #для_новичков #beginner #Collections #Практика
👍2🔥1
Тестирование и отладка проекта

После реализации протестируйте проект, чтобы убедиться, что всё работает.

Запустите проект:
Правой кнопкой на файле Main.java → Run 'Main.main()'.
В консоли IDE вы должны увидеть вывод списка книг с их деталями.


Отладка:
Если ошибки: Проверьте синтаксис (точки с запятой, скобки).
Используйте отладчик: Установите breakpoint (красная точка слева от строки в main), запустите в debug-режиме (Shift+F9) и шагайте по коду (F8).
Общие проблемы: NullPointerException (если массив не инициализирован), IndexOutOfBoundsException (если выход за пределы массива).


Проверьте вывод:
Убедитесь, что книги выводятся в порядке добавления в массив.
Попробуйте изменить размер массива или добавить больше книг — увидите, как фиксированный размер ограничивает (это мотивирует к коллекциям позже).



Полезные советы для новичков

Организация кода: Используйте пакеты для группировки (например, library.models для Book).
Инкапсуляция: Даже в простом проекте делайте поля private и добавьте геттеры/сеттеры, если нужно изменять.
Массивы vs коллекции: Заметьте ограничения массива (фиксированный размер, ручное управление) — в следующих уроках заменим на ArrayList.
Комментарии: Добавляйте // комментарии к шагам, чтобы код был читаемым.
Версионирование: Если используете Git, создайте репозиторий и закоммитьте начальную версию проекта.
Ресурсы: Документация Oracle по классам и массивам для напоминания синтаксиса.



Практическое задание

Задача 1: Расширьте класс Book, добавив приватное поле isbn (String) и обновите конструктор и метод printDetails() для его включения.
Задача 2: Увеличьте массив до 5 элементов, добавьте больше книг и убедитесь, что вывод работает.
Задача 3: Попробуйте вывести только книги после определенного года — используйте if в цикле перебора массива.

Реализуйте эти задачи самостоятельно, следуя шагам урока. Это поможет закрепить основы перед переходом к коллекциям.


#Java #для_новичков #beginner #Collections #Практика
👍2🔥1