Java for Beginner
743 subscribers
709 photos
200 videos
12 files
1.15K links
Канал от новичков для новичков!
Изучайте Java вместе с нами!
Здесь мы обмениваемся опытом и постоянно изучаем что-то новое!

Наш YouTube канал - https://www.youtube.com/@Java_Beginner-Dev

Наш канал на RUTube - https://rutube.ru/channel/37896292/
Download Telegram
Задачи и жизненный цикл в Gradle


Task API: Task, DefaultTask, @TaskAction

Задачи (tasks) — это основная единица работы в Gradle, представляющая такие действия, как компиляция, тестирование или упаковка. Task API предоставляет инструменты для создания и настройки задач.


Основные компоненты

Task:
Интерфейс org.gradle.api.Task, определяющий базовую функциональность задачи (например, выполнение, зависимости).
Все задачи в Gradle реализуют этот интерфейс.


DefaultTask:
Класс org.gradle.api.DefaultTask, стандартная реализация интерфейса Task.
Используется для создания пользовательских задач.


Пример (Groovy DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class CustomTask extends DefaultTask {
@TaskAction
void executeTask() {
println 'Executing custom task'
}
}

tasks.register('customTask', CustomTask)


@TaskAction:
Аннотация, указывающая метод, который выполняется при запуске задачи.

Пример (Kotlin DSL):
import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

open class CustomTask : DefaultTask() {
@TaskAction
fun executeTask() {
println("Executing custom task")
}
}

tasks.register<CustomTask>("customTask")


В памяти: Каждая задача представлена как объект в JVM, содержащий метаданные (имя, зависимости, действия). Gradle загружает все задачи в память во время фазы конфигурации, что увеличивает потребление памяти пропорционально их количеству. Плагины, такие как java, добавляют множество задач (например, compileJava, test), увеличивая overhead.


Gradle Lifecycle

Жизненный цикл Gradle состоит из трех фаз: Initialization, Configuration и Execution. Каждая фаза выполняет определенные функции и влияет на производительность и память.

Initialization Phase:
Gradle загружает settings.gradle для определения структуры проекта (корневое имя, подмодули).
Создает объекты Project для корневого проекта и подпроектов.
Устанавливает начальные настройки, такие как репозитории и плагины.

В памяти: Минимальная фаза по потреблению ресурсов, так как загружается только settings.gradle и связанные плагины. Объем памяти зависит от количества модулей (обычно 50-100 МБ).


Configuration Phase:

Gradle парсит все файлы build.gradle, создавая модель проекта и граф задач (Directed Acyclic Graph, DAG).
Все скрипты конфигурации выполняются, даже для задач, которые не будут запущены.
Пример: Определение зависимостей, задач и плагинов.

В памяти: Самая ресурсоемкая фаза, так как Gradle загружает и компилирует все скрипты, плагины и зависимости. Для крупных проектов может потребоваться 500-1000 МБ памяти.

Оптимизация: Используйте флаг --configure-on-demand для конфигурации только необходимых модулей:
./gradlew build --configure-on-demand


Execution Phase:
Gradle выполняет задачи, указанные в командной строке (например, ./gradlew build), в порядке, определенном DAG.
Инкрементальность пропускает задачи, чьи входные/выходные данные не изменились (см. ниже).

В памяти: Зависит от сложности задач. Например, compileJava загружает исходные файлы и зависимости, а test — тестовые классы и фреймворки. Параллельное выполнение (--parallel) увеличивает пиковое потребление памяти.


Нюансы:

Конфигурация выполняется всегда, что замедляет сборку, особенно для крупных проектов.
Gradle Daemon сохраняет JVM между сборками, ускоряя повторные запуски, но увеличивая базовое потребление памяти (200-300 МБ).
Используйте --no-daemon для одноразовых сборок:

./gradlew build --no-daemon


#Java #middle #Gradle #Task #Lifecycle
👍2
Task Graph, зависимости между задачами

Gradle строит Directed Acyclic Graph (DAG) для задач, где узлы — задачи, а ребра — зависимости. Это определяет порядок выполнения.


Зависимости между задачами

dependsOn:
Указывает, что задача зависит от выполнения других задач.

Пример:
task compileJava {
doLast { println 'Compiling Java' }
}
task test(dependsOn: compileJava) {
doLast { println 'Running tests' }
}

Gradle выполнит compileJava перед test.


mustRunAfter:
Определяет порядок выполнения без строгой зависимости.

Пример:

task taskA {
doLast { println 'Task A' }
}
task taskB {
mustRunAfter 'taskA'
doLast { println 'Task B' }
}

Если обе задачи выполняются, taskB будет после taskA, но taskB может выполняться отдельно.


finalizedBy:
Указывает задачу, которая выполняется после завершения текущей, даже при ошибке.

Пример:
task build {
doLast { println 'Building' }
}
task cleanUp {
doLast { println 'Cleaning up' }
}
build.finalizedBy cleanUp


В памяти: DAG задач хранится как структура данных в JVM, где каждая задача — объект с метаданными (зависимости, действия). Размер графа пропорционален количеству задач, что может увеличить потребление памяти до нескольких сотен МБ в крупных проектах.



Incremental Build и Up-to-Date Checks

Gradle оптимизирует производительность за счет инкрементальной сборки, пропуская задачи, чьи входные/выходные данные не изменились.

Механизм:
Gradle проверяет хэши входных (исходные файлы, свойства) и выходных данных (скомпилированные классы, JAR).
Если хэши совпадают, задача помечается как up-to-date и пропускается.


Пример вывода:
> Task :compileJava UP-TO-DATE


Пример настройки:
tasks.named('compileJava') {
inputs.files('src/main/java')
outputs.dir('build/classes/java/main')
}


В памяти: Gradle хранит хэши входов/выходов в памяти и в ~/.gradle/caches для сравнения. Это добавляет небольшой overhead (около 10-50 МБ), но значительно ускоряет сборку.


Нюансы:

Неправильная настройка входов/выходов может привести к ненужному выполнению задач.
Используйте --info для анализа, почему задача не была пропущена:

./gradlew build --info



Gradle Inputs/Outputs (Task Inputs/Outputs)

Задачи Gradle имеют входы и выходы, которые определяют, что влияет на выполнение задачи и что она производит.

Inputs:
Файлы, свойства или другие данные, от которых зависит задача.

Пример:
task processFiles {
inputs.files fileTree('src/main/resources')
doLast {
println 'Processing files'
}
}


Outputs:
Файлы или директории, создаваемые задачей.

Пример:
task generateReport {
outputs.file file('build/report.txt')
doLast {
file('build/report.txt').text = 'Report content'
}
}


В памяти: Gradle хранит метаданные входов/выходов в памяти и кэширует хэши в ~/.gradle/caches. Для задач с большим количеством файлов (например, compileJava) это увеличивает потребление памяти, так как Gradle сканирует файловую систему.


Нюансы:
Явно указывайте входы/выходы для кастомных задач, чтобы включить инкрементальность.

Используйте inputs.property для не-файловых входов:
task customTask {
inputs.property 'version', project.version
doLast { println "Version: ${project.version}" }
}



#Java #middle #Gradle #Task #Lifecycle
👍1
Do-first/do-last и ленивость (Provider, Property)

Gradle поддерживает гибкую настройку задач через doFirst и doLast, а также ленивую конфигурацию через Provider и Property.

doFirst и doLast:
doFirst: Добавляет действие в начало выполнения задачи.
doLast: Добавляет действие в конец выполнения задачи.


Пример:
task example {
doFirst { println 'Starting task' }
doLast { println 'Ending task' }
}


Ленивость (Provider, Property):
Gradle использует ленивую оценку для отсрочки вычислений до фазы выполнения.

Provider: Интерфейс для ленивых значений.def version = providers.provider { project.version }
task printVersion {
doLast {
println "Version: ${version.get()}"
}
}


Property: Для управления свойствами задачи.

task customTask {
def outputFile = objects.property(String)
outputFile.set('build/output.txt')
doLast {
println "Output: ${outputFile.get()}"
}
}


В памяти: doFirst и doLast добавляют действия как объекты в задачу, минимально увеличивая память. Ленивые Provider и Property хранят ссылки на значения, а не сами значения, что оптимизирует память до их вычисления в фазе выполнения.



Gradle Listeners и хуки

Gradle предоставляет хуки для мониторинга и настройки жизненного цикла и задач.

BuildListener:
Устаревший интерфейс для мониторинга событий сборки.

Пример:
gradle.buildFinished {
println 'Build completed'
}



TaskExecutionListener:

Отслеживает выполнение задач.

Пример:
gradle.taskGraph.whenReady {
println 'Task graph is ready'
}


Project.afterEvaluate:
Выполняется после фазы конфигурации.

Пример:
project.afterEvaluate {
println 'Project configured'
}

В памяти: Хуки создают дополнительные объекты-слушатели в памяти, увеличивая overhead. Для крупных проектов с множеством слушателей это может добавить 10-50 МБ памяти.


Нюансы:

Используйте хуки с осторожностью, чтобы избежать замедления сборки.
Для сложной логики создавайте плагины вместо хуков.



Gradle Build Cache

Build Cache позволяет кэшировать результаты задач для повторного использования между сборками или машинами.

Настройка:
buildCache {
local {
enabled = true
}
remote(HttpBuildCache) {
url = 'https://cache.example.com/'
push = true
}
}


Как работает:
Gradle кэширует выходные данные задач (например, скомпилированные классы, JAR) в ~/.gradle/caches/build-cache или на удаленном сервере.
При повторной сборке Gradle проверяет хэши входов/выходов и использует кэшированные результаты, если они совпадают.
Пример: Задача compileJava кэширует классы в build/classes.


Использование:
Включите кэш:
./gradlew build --build-cache


Очистка локального кэша:
rm -rf ~/.gradle/caches/build-cache


В памяти: Build Cache требует хранения хэшей и метаданных в памяти во время выполнения, что добавляет 50-100 МБ overhead. Удаленный кэш увеличивает сетевые операции, но снижает локальные вычисления.


Нюансы:
Настройте входы/выходы задач точно, чтобы кэш работал корректно.
Build Cache наиболее эффективен для CI/CD, где результаты задач переиспользуются между сборками.



#Java #middle #Gradle #Task #Lifecycle
👍1
Плагины и расширение функциональности в Gradle

Плагины в Gradle — это основной механизм расширения функциональности, позволяющий добавлять задачи, конфигурации и зависимости для автоматизации сборки. Они обеспечивают модульность и гибкость, позволяя адаптировать Gradle под конкретные проекты. Эта статья подробно описывает типы плагинов, встроенные и сторонние плагины, создание собственных плагинов, публикацию на Gradle Plugin Portal, стратегии разрешения плагинов и управление через pluginManagement. Особое внимание уделяется внутренним механизмам, управлению памятью и нюансам.



Типы плагинов

Gradle поддерживает два основных типа плагинов: Script Plugins и Binary Plugins.

Script Plugin (apply from)
Описание: Скриптовые плагины — это файлы Gradle (обычно .gradle или .gradle.kts), которые содержат логику сборки и подключаются к build.gradle через apply from.

Пример (Groovy DSL):
apply from: 'other.gradle'


Содержимое other.gradle:
task customTask {
doLast {
println 'Custom task from script plugin'
}
}


Kotlin DSL:
apply(from = "other.gradle.kts")


Содержимое other.gradle.kts:
tasks.register("customTask") {
doLast {
println("Custom task from script plugin")
}
}


Использование: Для небольших проектов или повторно используемых фрагментов кода в рамках одного проекта.
В памяти: Скриптовые плагины парсятся как обычные Gradle-скрипты, добавляя задачи и конфигурации в модель проекта. Это увеличивает потребление памяти, аналогично основному build.gradle, но overhead минимален (10-50 МБ).



Binary Plugin (apply plugin:)

Описание: Бинарные плагины — это скомпилированные Java/Groovy/Kotlin-классы, распространяемые как JAR-файлы. Они подключаются через apply plugin или блок plugins.

Пример (Groovy DSL):
apply plugin: 'java'


В памяти: Бинарные плагины загружаются как Java-классы в JVM, включая их зависимости. Это увеличивает потребление памяти пропорционально сложности плагина (50-200 МБ для крупных плагинов, таких как android).


plugins {} vs apply plugin:

plugins {}:
Современный способ подключения плагинов, введенный в Gradle 2.1.
Использует декларативный синтаксис и разрешает плагины из Gradle Plugin Portal или репозиториев.


Пример:
plugins {
id 'java'
id 'org.springframework.boot' version '2.7.18'
}


Kotlin DSL:
plugins {
java
id("org.springframework.boot") version "2.7.18"
}


Преимущества: Автоматическое разрешение версий, поддержка Gradle Plugin Portal, меньшая вероятность ошибок.



apply plugin:
Традиционный способ, используемый в старых версиях Gradle.

Требует явного указания зависимости в buildscript:
buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.7.18'
}
}
apply plugin: 'org.springframework.boot'


Недостатки: Более многословный, требует ручного управления зависимостями.

В памяти: plugins {} использует внутренний механизм разрешения Gradle, минимизируя overhead по сравнению с buildscript, который загружает дополнительные зависимости в classpath.

Рекомендация: Используйте plugins {} для современных проектов, так как он проще и поддерживает автоматическое разрешение.


#Java #middle #Gradle #Task #Plugin
👍2
Built-in плагины

Gradle поставляется с набором встроенных плагинов, которые покрывают стандартные сценарии сборки.

java:
Добавляет задачи для компиляции, тестирования и упаковки Java-проектов (например, compileJava, test, jar).

Пример:
plugins {
id 'java'
}


В памяти: Загружает задачи и конфигурации (implementation, testImplementation), увеличивая модель проекта (50-100 МБ).


application:
Добавляет задачи для запуска Java-приложений (run, installDist).

Пример:
plugins {
id 'application'
}
application {
mainClass = 'com.example.Main'
}


В памяти: Добавляет задачи и classpath, минимально увеличивая overhead.


base:
Базовый плагин, добавляющий задачи жизненного цикла (clean, assemble, check).

Пример:
plugins {
id 'base'
}

В памяти: Легковесный, добавляет минимальное количество задач.


java-library:
Расширяет java, добавляя конфигурации api и implementation для библиотек.

Пример:

plugins {
id 'java-library'
}
dependencies {
api 'org.apache.commons:commons-lang3:3.12.0'
}

В памяти: Увеличивает граф зависимостей за счет дополнительных конфигураций.


checkstyle:
Интегрирует проверку стиля кода с помощью Checkstyle.

Пример:
plugins {
id 'checkstyle'
}
checkstyle {
toolVersion = '8.45'
configFile = file('config/checkstyle/checkstyle.xml')
}

В памяти: Загружает конфигурацию Checkstyle и отчеты, увеличивая потребление памяти (50-100 МБ для крупных проектов).


maven-publish:

Позволяет публиковать артефакты в Maven-репозитории.

Пример:
plugins {
id 'maven-publish'
}
publishing {
publications {
mavenJava(MavenPublication) {
from components.java
}
}
repositories {
maven {
url 'https://nexus.example.com/repository/maven-releases'
}
}
}

В памяти: Загружает метаданные публикации и артефакты, увеличивая overhead при публикации.



#Java #middle #Gradle #Task #Plugin
👍2
Плагины для Kotlin, Android

Kotlin:
Плагин org.jetbrains.kotlin.jvm для JVM-проектов или org.jetbrains.kotlin.android для Android.

Пример:
plugins {
id 'org.jetbrains.kotlin.jvm' version '1.9.0'
}
dependencies {
implementation 'org.jetbrains.kotlin:kotlin-stdlib:1.9.0'
}

В памяти: Загружает Kotlin-компилятор и зависимости, добавляя 100-200 МБ overhead.


Android:

Плагин com.android.application или com.android.library для Android-проектов.

Пример:
plugins {
id 'com.android.application' version '8.1.0'
id 'org.jetbrains.kotlin.android' version '1.9.0'
}
android {
compileSdk 33
defaultConfig {
applicationId 'com.example.app'
minSdk 21
targetSdk 33
versionCode 1
versionName '1.0'
}
}

В памяти: Android-плагины загружают Android SDK, инструменты сборки (dexer, aapt2) и зависимости, что может потребовать 500-1000 МБ памяти.



Создание собственных плагинов

Собственные плагины позволяют кастомизировать сборку. Они могут быть написаны на Groovy, Kotlin или Java.

Плагин на Groovy

Создайте проект с структурой:
my-plugin/
├── src/main/groovy/com/example/MyPlugin.groovy
├── build.gradle


Реализуйте плагин:
package com.example
import org.gradle.api.Plugin
import org.gradle.api.Project

class MyPlugin implements Plugin<Project> {
void apply(Project project) {
project.tasks.register('myTask') {
doLast {
println 'Hello from MyPlugin!'
}
}
}
}


Настройте build.gradle:
plugins {
id 'groovy'
id 'maven-publish'
}
group = 'com.example'
version = '1.0'
publishing {
publications {
maven(MavenPublication) {
from components.java
}
}
}


Опубликуйте:
./gradlew publish.

В памяти: Groovy-плагины загружают Groovy-библиотеки, добавляя 50-100 МБ overhead.



Плагин на Kotlin

Создайте проект:
my-plugin/
├── src/main/kotlin/com/example/MyPlugin.kt
├── build.gradle.kts


Реализуйте плагин:
package com.example
import org.gradle.api.Plugin
import org.gradle.api.Project

class MyPlugin : Plugin<Project> {
override fun apply(project: Project) {
project.tasks.register("myTask") {
doLast {
println("Hello from MyPlugin!")
}
}
}
}


Настройте build.gradle.kts:
plugins {
`kotlin-dsl`
`maven-publish`
}
group = "com.example"
version = "1.0"
publishing {
publications {
create<MavenPublication>("maven") {
from(components["java"])
}
}
}


Опубликуйте:
./gradlew publish.

В памяти: Kotlin-плагины загружают Kotlin-библиотеки, добавляя 50-100 МБ overhead, но обеспечивают строгую типизацию.


Плагин на Java

Аналогично, но используйте Java-классы:
package com.example;
import org.gradle.api.Plugin;
import org.gradle.api.Project;

public class MyPlugin implements Plugin<Project> {
@Override
public void apply(Project project) {
project.getTasks().register("myTask", task -> {
task.doLast(t -> System.out.println("Hello from MyPlugin!"));
});
}
}

В памяти: Java-плагины легче, чем Groovy/Kotlin, так как не требуют дополнительных библиотек DSL.



Публикация плагина
Опубликуйте в локальный репозиторий:
./gradlew publishToMavenLocal


Используйте в другом проекте:
plugins {
id 'com.example.my-plugin' version '1.0'
}



#Java #middle #Gradle #Task #Plugin
👍2
Gradle Plugin Portal

Gradle Plugin Portal (plugins.gradle.org) — центральный репозиторий для публикации и загрузки плагинов.

Публикация:
Зарегистрируйтесь на plugins.gradle.org.
Получите API-ключ.


Настройте build.gradle:
plugins {
id 'com.gradle.plugin-publish' version '1.2.0'
}
pluginBundle {
plugins {
myPlugin {
id = 'com.example.my-plugin'
displayName = 'My Plugin'
description = 'A custom Gradle plugin'
tags = ['custom', 'example']
version = '1.0'
}
}
}


Опубликуйте:
./gradlew publishPlugins.


Использование:
plugins {
id 'com.example.my-plugin' version '1.0'
}

В памяти: Gradle Plugin Portal загружает метаданные плагинов в память при разрешении, добавляя небольшой overhead (10-50 МБ).


Plugin Resolution Strategy

Gradle разрешает плагины из репозиториев, указанных в pluginManagement или buildscript.

Стратегия разрешения:
Поиск: Gradle ищет плагин в Gradle Plugin Portal, Maven Central или пользовательских репозиториях.
Конфликты: Если плагин доступен в нескольких версиях, Gradle выбирает новейшую или указанную версию.


Настройка:
configurations.all {
resolutionStrategy {
force 'com.example:my-plugin:1.0'
}
}

В памяти: Разрешение плагинов загружает их метаданные и зависимости в память, аналогично зависимостям проекта.


pluginManagement в settings.gradle

Блок pluginManagement в settings.gradle позволяет централизованно управлять плагинами для всех модулей.

Пример:
pluginManagement {
repositories {
gradlePluginPortal()
mavenCentral()
}
plugins {
id 'org.springframework.boot' version '2.7.18'
}
}


Kotlin DSL:
pluginManagement {
repositories {
gradlePluginPortal()
mavenCentral()
}
plugins {
id("org.springframework.boot") version "2.7.18"
}
}


Назначение:
Указывает репозитории для плагинов.
Фиксирует версии плагинов для всех модулей.


Поддерживает кастомные разрешения:

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.id == 'com.example.my-plugin') {
useModule('com.example:my-plugin:1.0')
}
}
}
}

В памяти: pluginManagement загружает метаданные плагинов во время инициализации, добавляя минимальный overhead (10-30 МБ), но обеспечивая согласованность версий.



Нюансы и внутренние механизмы

Управление памятью:
Плагины загружаются как Java-классы в JVM, включая их зависимости. Крупные плагины (например, android) могут добавлять 500-1000 МБ overhead.
Скриптовые плагины парсятся как Groovy/Kotlin-скрипты, увеличивая потребление памяти из-за динамической компиляции.
Оптимизируйте с помощью pluginManagement для централизованного управления и минимизации дублирования.


Кэширование:
Плагины и их зависимости кэшируются в ~/.gradle/caches/modules-2, снижая сетевые запросы.
Очистка кэша:
rm -rf ~/.gradle/caches.


Производительность:
plugins {} быстрее, чем apply plugin:, за счет оптимизированного разрешения.
Параллельное выполнение задач (--parallel) ускоряет сборку, но увеличивает пиковое потребление памяти.
Используйте --configure-on-demand для сокращения времени конфигурации.


Отладка:
Используйте --info или --debug для анализа загрузки плагинов:
./gradlew build --debug


Проверьте список задач:
./gradlew tasks --all.


Build Scans (--scan) показывают влияние плагинов на сборку.

Совместимость:

Убедитесь, что плагины совместимы с версией Gradle (например, Android-плагины требуют Gradle 7.0+).
Используйте JAVA_HOME с JDK 8+ (рекомендуется 11+).


Безопасность:
Храните учетные данные для репозиториев в ~/.gradle/gradle.properties с ограниченными правами (chmod 600).
Проверяйте плагины из Gradle Plugin Portal на наличие GPG-подписей.


#Java #middle #Gradle #Task #Plugin
👍2
Модульность и многомодульные проекты в Gradle

Gradle поддерживает многомодульные проекты, позволяя организовать проект в виде иерархии подмодулей, каждый из которых имеет собственный build.gradle или build.gradle.kts. Это обеспечивает модульность, разделение ответственности и повторное использование кода.

Преимущества:
Разделение функциональности на независимые модули (например, API, ядро, реализация).
Упрощение тестирования и поддержки.
Параллельная сборка модулей для повышения производительности.
Повторное использование конфигураций и зависимостей.


В памяти: Каждый модуль создает собственный объект Project в модели Gradle, увеличивая потребление памяти пропорционально количеству модулей (обычно 50-100 МБ на модуль). Граф задач (DAG) для всех модулей хранится в памяти, что может достигать 1-2 ГБ для крупных проектов.


settings.gradle(.kts) — управление include-проектами
Файл settings.gradle (или settings.gradle.kts) определяет структуру многомодульного проекта, включая корневое имя и подмодули.

Основные функции:
Указание имени корневого проекта: rootProject.name.
Включение подмодулей через include.
Настройка репозиториев и плагинов через pluginManagement.


Пример (Groovy DSL):
rootProject.name = 'my-project'
include 'module-api', 'module-core', 'module-web'


Kotlin DSL:
rootProject.name = "my-project"
include("module-api", "module-core", "module-web")


Нюансы:
Каждый подмодуль должен иметь собственный build.gradle в папке с таким же именем (например, module-api/build.gradle).
Подмодули могут быть вложенными:include 'module-core:submodule'


В памяти: settings.gradle загружается на фазе инициализации, создавая модель проекта с объектами Project для каждого модуля. Это минимальная фаза по потреблению памяти (50-100 МБ), но сложные настройки (например, pluginManagement) могут увеличить overhead.



Структура multi-module проекта: Parent + Children

Многомодульный проект состоит из корневого (parent) проекта и подмодулей (children), каждый из которых имеет собственный build.gradle.

Пример структуры:
my-project/
├── build.gradle
├── settings.gradle
├── module-api/
│ └── build.gradle
├── module-core/
│ └── build.gradle
├── module-web/
│ └── build.gradle


Parent проект:

Корневой build.gradle задает общие настройки, плагины и зависимости для всех подмодулей.

Пример:
allprojects {
repositories {
mavenCentral()
}
}
subprojects {
apply plugin: 'java'
dependencies {
testImplementation 'junit:junit:4.13.2'
}
}


Children проекты:
Каждый подмодуль имеет собственный build.gradle, определяющий специфические задачи, зависимости и конфигурации.

Пример (module-api/build.gradle):
plugins {
id 'java-library'
}
dependencies {
api 'org.apache.commons:commons-lang3:3.12.0'
}


В памяти: Корневой проект загружает модель для всех подмодулей, включая их задачи и зависимости. Каждый подмодуль добавляет объект Project и граф задач, увеличивая потребление памяти.

Для оптимизации используйте --configure-on-demand:
./gradlew build --configure-on-demand


Project Access: project(":module")

Подмодули доступны через объект project с использованием их пути, определенного в settings.gradle.

Пример:
dependencies {
implementation project(':module-core')
}

Это добавляет module-core как зависимость для текущего модуля.

Нюансы:
Путь начинается с : для корневого проекта (например, :module-core:submodule для вложенных модулей).
Доступ к свойствам другого модуля:println project(':module-core').version


В памяти: Gradle хранит все объекты Project в памяти, обеспечивая доступ через project(). Это увеличивает модель проекта, особенно для больших иерархий модулей.


#Java #middle #Gradle #Task #include_projects
👍2
Sharing Logic между проектами

Совместное использование логики между модулями повышает повторное использование кода и упрощает поддержку.

Common Logic

В корневом build.gradle:
Используйте блоки allprojects и subprojects для общих настроек:
subprojects {
apply plugin: 'java'
version = '1.0.0'
repositories {
mavenCentral()
}
}


Скриптовые плагины:

Создайте файл common.gradle:

apply plugin: 'java'
dependencies {
testImplementation 'junit:junit:4.13.2'
}


Подключите в подмодулях:
apply from: "$rootDir/gradle/common.gradle"


Кастомные плагины:
Создайте плагин для общей логики (см. раздел "Создание собственных плагинов" в предыдущей статье).

Пример применения:
subprojects {
apply plugin: 'com.example.common-plugin'
}

В памяти: Общая логика уменьшает дублирование кода, но увеличивает сложность модели проекта, так как Gradle загружает и парсит дополнительные скрипты или плагины.



Version Catalogs (libs.versions.toml)

Version Catalogs — это централизованный способ управления версиями зависимостей и плагинов, введенный в Gradle 7.0.

Настройка (gradle/libs.versions.toml):
[versions]
spring-boot = "2.7.18"
junit = "4.13.2"

[libraries]
spring-core = { group = "org.springframework", name = "spring-core", version.ref = "spring-boot" }
junit = { group = "junit", name = "junit", version.ref = "junit" }

[plugins]
spring-boot = { id = "org.springframework.boot", version.ref = "spring-boot" }


Использование:

plugins {
alias(libs.plugins.spring.boot)
}
dependencies {
implementation libs.spring.core
testImplementation libs.junit
}


Kotlin DSL:
plugins {
alias(libs.plugins.spring.boot)
}
dependencies {
implementation(libs.spring.core)
testImplementation(libs.junit)
}


Преимущества:

Централизованное управление версиями.
Улучшенная читаемость и автодополнение в IDE.
Упрощение обновления версий.


В памяти: Version Catalog загружается как часть модели проекта, добавляя минимальный overhead (10-20 МБ), но упрощает управление зависимостями, снижая вероятность конфликтов.


#Java #middle #Gradle #Task #include_projects
👍2
Сценарии и практики разделения: Core/Api/Impl

Разделение проекта на модули (Core, Api, Impl) — распространенная практика в корпоративной разработке для обеспечения модульности и повторного использования.

Core:
Содержит общую бизнес-логику, утилиты, модели данных.

Пример:
module-core/build.gradle:plugins {
id 'java-library'
}
dependencies {
implementation 'org.apache.commons:commons-lang3:3.12.0'
}


Api:
Определяет публичные интерфейсы, DTO или контракты.

Пример:
module-api/build.gradle:plugins {
id 'java-library'
}
dependencies {
api project(':module-core')
}


Impl:
Реализует интерфейсы из Api, добавляя конкретную функциональность.

Пример: module-impl/build.gradle:
plugins {
id 'java'
}
dependencies {
implementation project(':module-api')
}


Структура:
my-project/
├── module-core/
│ └── build.gradle
├── module-api/
│ └── build.gradle
├── module-impl/
│ └── build.gradle
├── build.gradle
├── settings.gradle


Практики:
Используйте api в модуле module-api для экспорта публичных интерфейсов.
Минимизируйте зависимости между модулями, чтобы избежать циклических зависимостей.
Централизуйте версии через Version Catalog или dependencyManagement в корневом build.gradle.


В памяти: Каждый модуль добавляет объект Project, задачи и зависимости в модель Gradle, увеличивая потребление памяти. Разделение на Core/Api/Impl уменьшает размер каждого модуля, но увеличивает общее количество объектов в памяти.



Gradle Composite Builds

Composite Builds позволяют включать другие Gradle-проекты как зависимости, без необходимости публикации в репозиторий.

Настройка:
В settings.gradle корневого проекта:
includeBuild '../other-project'


В build.gradle используйте проект как зависимость:
dependencies {
implementation project(':other-project:module-x')
}


Использование:
Полезно для разработки связанных проектов, находящихся в разных репозиториях.
Gradle автоматически разрешает зависимости между проектами.


В памяти: Composite Builds загружают модели всех включенных проектов в память, значительно увеличивая overhead (100-500 МБ на проект). Используйте с осторожностью для крупных систем.


Процесс сборки с помощью task-graph (Task Avoidance, Parallel Build)

Gradle строит граф задач (Directed Acyclic Graph, DAG) для определения порядка выполнения задач в многомодульных проектах.

Task Avoidance:
Gradle использует инкрементальную сборку, пропуская задачи, чьи входные/выходные данные не изменились (up-to-date checks).

Пример:
tasks.named('compileJava') {
inputs.files('src/main/java')
outputs.dir('build/classes/java/main')
}

В памяти: Gradle хранит хэши входов/выходов в памяти и ~/.gradle/caches, добавляя небольшой overhead (10-50 МБ).


Parallel Build:
Gradle поддерживает параллельное выполнение задач с флагом --parallel:
./gradlew build --parallel


#Java #middle #Gradle #Task #include_projects
👍2